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FOREWORD

This is Part V of a series of reports on rationales and

techniques of matrix factoring which play an important role

in multivariate analysis techniques. Indeed, it may well be

said that all adequate models and methods of multivariate

analysis are special cases of matrix factoring techniques.

The more traditional methods of factor analysis, in particular,

are special cases of more general matrix factnring techniques,

as are also all multiple regression models.
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PRIMA = FACTOR MATRICES MOM HYPOTHEBS

We have seen in the previous chapters that we may calculate, in a wide

variety of ways, a factor loadJng matrix whose major product moment gives a

lower rank approximation to the correlation or covariance matrix obtained

from data matrices. We also know from Chapter 4 that, if any of these matri-

ces obtained by a particular computational method were postmultiplied by a

square orthonormal matrix, the major product moment of the resulting matrix

woul be the same as the major product mment of the matrix prior to multi-

plication by the orthonormal matrix. This, of course, is because in the

major product moaent the square orthonormal matrix is multiplied by its

transpose to yield the identity matrix.

We also saw in Chapter 4 that, if we regard the factor loading matrix

as one of the factors in the product of the two matrices which purports to

approximate the data matrix, the same situation prevails. Suppose we have

same approximation to a factor score matrix, postmultiplied by the trans-

pose of a factor loading matrix, as a lover rank approximation to the data

matrix. We may then also have the factor score matrix postmultiplied by an

orthonormal matrix to yield another factor score matrix, and the transpose

of the factor loading matrix premultiplied by the transpose of the same ortho-

normal matrix. Then the product of these two transformed matrices would be

exactly the same as that of the original matrices.

Purthermore, we learned that these transformation matrices need not be

square orthonormal, but that we may have a more general situation. We may

have the factor score matrix post2aultiplied by some square basic matrix, and
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the transpose of the factor Ioading matrix premultiplIed by the inverse of

this same matrix. Then the major product of the two transformed matrices

wou-d be the same as, the maJor product of the two origina matrices. This

is becuse. the squ~z'e bggic matriJx mu1tKp~4e by its inverse yeLdo the

identi-ty matrix.

It is clear then, that we may have a multiply infinite number of factor

loading matrices whose major product moments give identical results. Simi-

larly, we may have an infinite number of pairs of factor score and factor

loading matrices, whose major products give identical results. The question

then arises as to which of these pairs of factor loading and factor score

matrices is best, in some defined sense.

In this chapter we shall consider only factor loading matrices. We

shll attempt to achieve some transformation of the arbitrary matrix so that

the new factor loading, matrix will have the following characteristics. First,

for each factor loading vector, only a relatively small number of the vari-.

ables shall have high loadings,. and the remainder should have sall load-

ings. Second, each variable shall have loadings in only a few of the factors.

Third, for any given pair of factors, a numaber of the variables shall have

small loadings in both factors. Fourth, for any given pair of factors, some

of the variables shall have high loadings in one factor and low in the other,

while other variables shall have high loadings in the second factor but not

in the first. Fifth, for any given pair of factors, very few of the vari-

ables shall have high loadings in both.

These are the conditions which Thurstone (1947) has frmlated as the

"s.imple structure" criteria. We shall therefore refer to trafomations



which attempt to achieve these objectives as simple stru.cture transforma-

tions, and we shall refer to the transformed factor loading matrix as a

simple vt~uctUrle efa toading mati x,.

There a-re% i 7enrl threae Moids of mthodga wch% av benus r

tranforing ~rbtray factor matrices to simple Structure matrics, The

first of these is by means of graphical rehd of rttion In thi metho

every vector of factor loadings is plotted against every other vector,. and

by inspection of the plots,, rotations or transformations are made two at 6

time. This is the oldest of the methods. It was developed by Thurstone

(1947) and has been used extensively. The chief disadvantages of the method

are that it is extremely time-*consuming; it is not adapte d to objective com-

putatloral routines; and a great deal of personal- judgment is left to the Iin-

dividual who does the plotting and the transformatos

The second procedure is based on apri h-ypotheses. He~e the invwe,,ti

gator has some aio hypothesis as to whtich variables Should have hi&h

loadings in which factors, and which shou~ld not. This we may call the po

thesis method of transfomton.

The third type of method involves analytical or mathea~tical Oriteivia

f or transformation. These methods adopt certain mathematical funOAtOll of

the transformed factor loadings which are to be otimhd.~ ey are CAlled

the anAlytcal methods of rnfr to.

Uhile the grapical methods have been extensively *8sed in thle Vat,
theq have been falling more and more into disuse as more db~eatGive Sethoie

have been developed. Therefore, these methods wil not be &Licused in tun

book. In this chapter, we shall give conisideration to thou.6 Methoft AMic
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start with some hypothesis as to which factor loading should be sizable in

which variables. In the next chapter, we shall consider some analyticalI methods which do not depend on 6 pi hypotheses.

In any cuoe, it must be emphasized, as Thurstone (1947) has done so

frequently, that the extent to which simple structure can be achieved by any

of the methods is definitely limited by the nature of the data to be analyzed,

and that simple structure must be inherent in the data if any of the methods

is to reveal it in the transformed factor matrices.

17.1 Characteristics of the Hypothesis Methods

The hypothesis methods of transformation are similar in several respects.

First, they begin with some arbitrary factor loading matrix--that is, with

some factor loading matrix computed by one of the various methods outlined

in the previous chapters, or by other methods. Second, they are based on

some hypothesis as to which of the tests have high loadings in which factors.

The methods differ essentially in the types 6f transformation matrices em-

ployed.

17.1.1 The Arbitrary Factor Matrices. The methods all begin with some

arbitrary factor matrix such as the centroid, the multiple group, the group

centroid, or the principal axis solution. In the methods we have discussed,

it will be recalled that they are all special cases of the rank reduction

method. It is, however, not necessary that the arbitrary factor matrices

be special cases of the rank reduction method. They may be based on some

clustering or B-coefficient methods, such as described by Holzinger and

Holman (9~)

te computational routines of the hypothesis methods differ essentially



according to which particular type of arbitrary matrix is used. It should

be er phasized at this point that most of the procedures we have outlined

have had as th1r primary ob-jective the finding of a factor loading matrixII which, with a Wi1minum nimber of, factors, will give the best approx ra{on

to the correlation or covariance matrix. A major concern has been to find

the smallest number of factors which. with a satisfactory degree of accuracy,

can reproduce the correlation or covariance matrix and, indirectly, the data

matrix. This objective recognizes the finding of a lower rank best approxi-

mation to a data matrix as fundamentel to all scientific investigations.

17.1.2 The Hypothesis Matrix. The group of methods considered in this

chapter depend on having some a prorli hypotheses as to which tests should

have high loadings in which factors, and which tests should have low load-

ings. These methods are characterized by the specification of a binary

hypothesis matrix. This binary matrix has a 1 in the 111th position if the

ith test has a high loading in the Jth factor. Otherwise, it has a 0 in

this position.

This binary hypothesis matrix can be made up after the variables are

assembled. However, Thurstone (1947), Gutinan (1952), and other have eM-

phasIzed that it is better first to make up an hypothesis matrix and then

to attempt to specify variables which will satisfy the hypothesis.

The ideal binary hypothesis matrix wmold be one in which there is only

a singe 1 in each row, and roughly an eual n=,ber of V's in each column.

This would be a nonoverlapping hypothesis matrix. However, there is noth-

ing to prevent one from having a more coeplex hypothesis so that he may

have several ls in each row for s(ne of the variables, indicating that he



believes the variables have loadings on more than one of the factors.

It will be recalled that a binary matrix is also involved in the multiple

group method of %cor analysts, and that binary vectors are involeda in the

group centroid method. In those methods, however it was consridered desir-

able, but not mandatory, that these binary matrices or vectors represent

plausible hypotheses as to the factor loadings to be found.

17.1.3 The Transformation Matrix. The methods described in this chapter

all require a decision as to what particular conditions are to be satisfied

by the transformation matrix. Usually it is considered desirable to have a

transformation matrix which is normal by columns. That is, the minor product

moment of the transformation matrix should have unity in the diagonals. This

restr ction is required so that the factor vectors of the new transformed

factor matrix will be comparable to one another. More technically, such a

transformation provides the basis for finding the correlation among the new

reference axes from which the new factor loadings are measured.

This concept, however, involves us with geometric and trigonometric

symbolic systems which we wish to avoid in this book. We have attempted to

restrict ourselves to algebraic and arithmetic concepts. This has been in

the belief that the traditional random mixture of various types of sybolic

mathematical systems does not yield a better understanding of the phenmena

under studn, uless one is already thorogl f ar lth the standard

symbolic systems and the interrelationships, among thgm. The assumption in
this book is that a readers are not t ghl familiar wh these over-

lapping and interrelated s*bolie osay s.

The methods differ with respect to the type of transfo oion involved.
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These may be square orthcuormal transom~ationso If the transformations

are not orthonormal, they are called oblique. Therefore, a choice between

orthonomatl oand obeque tansfomalkons isavailable . tho the term

"oblique" is ,not paficul arly appropr4te- we shall continue, +o use it

since it is we-ll-established in the literature.

The methods differ also in restrictions which may be placed on the

transformed simple structure factor loading matrix. We shall describe one

method,. More specifically, one type of transformation is such that, for all

variables which have O's in a given column of the hypothesis b nary matrix,

the sum of their loadings in the simple structure matrix for the correspond-

ing factor vector is 0.

17.2 Kinds of Methods

In this chapter we shall outline three methods which differ with respect

to the type of arbitrary matrix on which they are based. A fourth method

will yield a zero sum for assumed tero loadings in each factor. A fifth

method uses a square orthonormal transfomation.

17.2.1 The Multiple Group Matrix. This method begins with an arbitrary

factor matrix obtained by the multiple grop method. We shall assume that

the binary matrit used in the multiple group method was actually an hypo-

thesis matrix, and that it is the one which the transformed s$iMle structure

matrix is to resemble as closely as possible. This particular type of arbi-

trary factor loading matrix is regarded as a special case because certain

computational simplifications are possible when the binary gOrPing matrix

and the binary hypothesis matrix are the Same.

17.2.2 The Principal Axis Arbitrary Matrix. The second method we shall



outine uses the principal axis or basic structure factor loading matrix

as the arbtraxy matrix. In many cases When high speed computers have been

used,. the ouftion will be a principal. axis or basic structure factor matrix.

The cm-putal~ons for the tranis±omed simple otructure mA-ttix ae siied

because the principal axis solution yields an orthogonal factor matrix.

l7.2*.3 The Arbitrary Factor Matrix. This method may be regarded as a

generalization of other methods, of which the multiple group and the princi-

pal axis arbitrary matrices are special cases. Rowever, the solution does

not depend on any peculiar properties of the factor loading matrix, such as

orthogonality, or on the identity of the hypothesis and the grouping binary
matrix, as in the multiple group method. The method does not depend on how

the arbitrary factor matrix was determined, and requires only the construc-

tion of the binary hypothesis matrix.

17.2.A The Zero Partial Sum Method. This method is independent of the

particular type of arbitrary matrix on which it is based. We may begin with

any of the solutions discussed in the previous chapters. In eay case, the

transformation of the arbitrary matrix yields a simple structure matrix such

that those variables which have zeros in an hypothesis vector vill yield a

zero sum for the corresponding -factor loadings. This does not mean neces-

saily that the simple structure criteria may be well satisfted, or that the

binV hypothesis matrix may be reasonably well ppxi ed by the trans-

formed matrix. Pop example, it is qgite possible that even though Partial

sums are 0, the elements going into the am may still vary greatly. FUrther-

more, appreciable or high loadings may not 4a1*ar in the simle stuctue

matrix to correspond with l's in the hypothesis matrix. The results yielded
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by this or any simple structure solution are as much a function of the data

themselves as of the particular method used.

17.2.5 Me Orthonormal Tran eormaikoa. in the metho discus eA abo e,

the type of trniq t Abte Qr9fonprmal or 6blijue--wa0 to Mentioned.

It will be recalled that only if the transformation of a factor loading matrix

is orthonormal will the major product moment of the original and the trans-

formed factor loading matrix be the aame. There is nothing in the cLCputa-

tional procedures of the methods Just discussed to guarantee that the trans-

formation matrix will be orthonomnal. in general, it will be oblique. It

should be emphasized here that this is not a serious objection because, as

we have indicated in Chapter 4 , the main objective is not to reproduce the

correlation or covariance matrix with the major product moment of a factor

loading matrix, but rather to reproduce the original or rescaled data matrix

as closely as possible by the major product of a factor score and a factor

loading matrix. Therefore, if we get a given factor loading matrix and trans-

form it with some nonorthonormal or oblique matrix, we can always transform

the factor score matrix corresponding to it by the inverse of this transfor-

mation, so that the major product of the two will be the same as the maJor

product of the original factor score and factor loading matice.

However, there has been eonsiderabU insistence among s=e research

wOrkers that transformations be orthoinormal, and it is of interest to con-

eider a method wLhich will guarantee an o h loa solution based on the

binary hyothesis matrix. The chief advantage of the orthonomal transor-

mation procedWres is that in certain cases, as, for example, the princip&l

ax.s mehodj one can be sure that the facter scores Sre uncoelated, or
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what amounts to the same thing, that the factor score matrix is an orthogonal

Lmatrix.

17.3 The MUdi3pl Group Fmctok Matrix

17.3.1 Charactristi-c-s of the Method. This method assumes that we ha-ve

adopted the multiple group method of factoring the correlation matrix. As

will be recalled, this method begins with the multiplication of the correla-

tion covariance matrix by a grouping binary matrix. In the technique of

this section, the grouping binary matrix is the same as the binary hypothesis

matrix.

However, the procedure is such that one does not need to carry out all

of the computations for the multiple group factor matrix. Because the group-

ing and the hypothesis binary matrices are the same, one can enit same of the

computations for the multiple group matrix. Distinguishing characteristics

of this method are that one begins with only a partial solution of the multi-

ple group matrix, and that the computations are scmewhbat simpler than for

other hypothesis methods discussed in this chapter.

17.3.2 Ccoputaftonal Equations

17.2a Definition of Notation

H is the corelation matrix.

f is the binary hypothesis matrix.

.is the transformation matrix.

r is the correlation of the r&ference axes.

b is the simple stucture factor matx.
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17.3.2b The Equations

F = f (17.3.1)

,s F' (17.3.2)

tt' - S (17.3.3)

G -. F' F (173.4)

C= G S (17.3.5)

g - sC (17.3.6)

= g C (17.3.7)

'V (17.3.8)

H = t'CD (17.3.9)

r D Y D (17-.10)

b= F (c D) (17.3.11)

1743.3 CoUpitational Instructions. We begin the computations With the

correlation or cavariance matrix, rather than vith the multiple group factor

matrix, because we ahali emit the final steps of te multiple group solution.

We s e that the binary matrix f has bees constucted. rt has 1's for

those tests in each factor Which are assumed to have high loadings, and 0's

for alJ of the others.

The first stepo as in the muitiple group method, is indicated in Hq.



(17.3.1). Here we postmultiply a correlation matrix by the hypothesis binary

matrix f Obviously, this merely serves to sum those columns of the correla-

tion mtxorepoingt te 1' s, In the. vectors, of the f matrix QX1 the

The next step, as in the multiple grog-p method, is to premultiply the f'

matrix by the transpose of the F matrix calculated in Eq. (1L7,3,1). This is

indicated in Eq. (17.3.2) by the S matrix on the left of the equation* This,

in effect, adds rows of -the F matrix from Eq. (17.3.1), corresponding to the

I's in the vectors of the f matrix, to give a syummetric matrix, S, in Eq.

(17.3.2).

Eq. (17.3.3) indicates a triangular factoring of the Matrix S of Eq.

(17. 3.2). This triangular factoring is not necessary unless one actually

wishes to see the transformation matrix which is indicated in Eqj. (17.5.9).

* For most of thte parameters of interest in a factor analysis, this transfor-

mation matrix,, as such, is not required. It is only to make the analysis

copiete %iat it vlit be incgMde.

Eq. (17.3.I&) is the minor product moment of the F matrix calculated in

Eq. (731.Ti indicated on the left by G.

Eq. (1y.3-5) Mequire the calculation of the inverse of the G matrix

calculated in Eq. (1,7.36f)e, The matrix designated as C in Eq. (17.3.5) is

the S Maftix of Sq. (17.3.2) premutiplied by the inverse of the G matrix

given in Eq#.(73i)

The next step is to calculate the product Indicated in Eq. (17.3.6).

Rere we pma,14, 1y the CMatrix of Eq. (17.3.5) by the S matrix of Eq.

(3~.3.). hisA ye dsigMate, as



We next require the 7 matrix Indicated in Eq, (17.5.7). This is obtained

by premultiplying the C matrix of Eq. (17,3.5) by the £ matrix of Eq. (17.3.6).

The ccOPu1taftiOn of a diagonal matrix is indicated by Eq, (17,3.8). Tus

issimly :a 7%tria whose eements are the recx'iprocal saqua rzoo-t of the di -

agonal'1 eaemets onf the I matrix g&Iven by Eq. (17.3.7).

The computation of the H matrix, which is the transformation matrix for

the multiple group factor matrix, is indicated in Eq. (17.3.9). This is the

triple product, from left to right, of the upper triangular factor of the S

matrix in sq. (17.5.3) by the C matrix of Eq. (17.3.5) by the diago matrix

of Eq. (17.3&8). As indicated above, this matrix is not used in the cemputa-

tion of the simple structure factor loading matrix. It is used in Chater 21

for the calculation of general factor parameters, but if these are not de-

sired it ieed not be calculated.

The calculation of a correlation matrix is indicated in Eq. (17.-3.10).

This matrix is the minor product moment of the a matrix of Eq. (17.3.9). It

could be calculated as such from Eq. (17.3.9), but it is simpler to calculate

it from Eqs. (17.3.7) and (17.3.8). This matrix is of interest because it

shows the extent to which the reference vectors of the transformation matrix

are correlated. It is precisely a correlation matrix of the simple structure

reference axes. In most factor analyses, both this matrix and its no malized

inverse are calculated to indicate the extent to which the tranefomation de-

peats from orthonormality. More particularly, these matrices are useful for

purposes of further analysis, as indicated in Chapter 2. The matrix is of

interest also because, while in general simple structure factor m'atrices on

the sae variables are supposed to be relatively invariant from one type of



sample to another, the correlation matrix of the simple structure reference

axes as i ven in Eq. (17.3.10) may be regarded as characterizing the parti-

cular "smPle'"b -nw~h the AMnIysisa is, based,. It may varVy greatly *rOA Qle

The calculation of the simple structure factor loading matrix is given

in Eq. (17.3.11). As indicated on the rigt of this eqwation, we copute

first a matrix which is the product of the C matrix of Eq. (17.3.5) poSt-

multiplied by the diagonal matrix of Eq. (17.3.8). This matrix is then post-

l1 into te Fm0trix of Eq. (17.3.1).

The characteristic of this b matrix in Eq. (17.3.11) is that it should

represent as nearly as possible in the least square sense the simple struc-

ture hypothesis matrix f which has been scaled on the left by a diagonal such

that the transf n matrix H in Eq. (17.3,9) is normal by columns.

17.-3- Nerical Example. We begin this numerical example with the

correlation matrix of previous chapters.

We shall solve for only three factors; therefore the binary matrix con-

sists of only three column vectors. The unit elements in these three vectors

are taken, respectively, as the first three, the second three, and the third

three,

Table 17.3.1 gives the correlation matrix postiultiplied by the binary

moaOdex 1, as, inditotd b7 Eq. (113il).

Table 17.3.2 gives the minor product S of the L and the F matrices, as

idat d by Eq. ,(173.2).

Table 17.3.3 gives the minor product mcbent G of the F matrix, as in-

dicatbY Eq. (1743.4).
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Table 17.3.4 gives the inverse of the G matrix shown in Table 17.3.3.

Table 17,3,5 gives the product of the S matrix of Table 17.3.2 pre-

multiplied by the __ matrix of Table 17.3.4. This product is the C mat~rixI of Eq., 01,73-50L,
In the body of Table 17.3.6 is given the product of the C matrix of

Table 17.3.5, premultiplied by the S matrix of Table 17.3.2. This product

is the g matrix of Eq. (17.3.6). The last line of Table 17.3.6 is obtained

by calculating only the diagonal elements of the product Y. C given by

Eq. (17.3.7), and taking the reciprocal square roots of these elements as

indicated by Eq. (17.3.8).

Table 17.3.7 is the simple structure factor loading matrix b. This is

the triple product of the matrix F given by Table 17.3.1, the matrix C given

by Table 17.3.5, and a diagonal matrix D constituted from the elements of

the last row of Table 17.3.6. This product is indicated by Eq. (17.3.11).

The computations indicated by Eqs. (17.3.3), (17.3.9), and (17.3.10)

are not given in this ni-nerical example.
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Table 17.3.1 - Matrix T = F

2.FiTOO 0 -2490 0-95800

0,9700 0.37700 2.J001. 410 9100 2.0'-600

Table 17.3.2 - Matrix F'f = S

7.700 1.65700 .900

2.919o0 0 .8100 6.4o00

Table 17.3.3 - Matrix F' F = G7-71400~5 1.208 14.750a

,8.o5789 18.042L7 9.51 2

33f47508 962 17.9769

Table 17.3.3 - Matrix _'F_

0.0884 -0.00167 -0.07138

-0,0016 0. 076,94 -0-0393,1
-0o.07158 -0.03937 0.-1350

Table 17.3.5 - Matrix G1.S = C

o. 46.919 -o0o3M -0.2034-5
-0603 i73 0.54 0. o9
-0.gku42l -0.1.W 0. 41

Table 17.3,6 - Matrix S C = £ and Vector of

2. 99L 0.008%. o.00847
* o.o64,16 e 2-2 0 6,4042

o~a~q 0: 04 9 2,94

a0.845 o,864 0,760
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Table 17,7 Sim±ple Str'ucture F'actor Loading Matrix

O.$b5F -- ~6 UO OD)

-O, owra4 o,.o
0.813 O.875 -0.0,36

0.057 0.131 0.6,71
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17.4 The Principal Axis Factor Matrix

17.4.1 Characteristics of the Method. This method, like the previous

one, is a special ca-se of an arbitrary matrix resulting in simplified compu-

tations. Here the siplifiction results because the principal axis factor

matrix is orthogonal by col:ms.

One of the most important characteristics of the method is that the

computations do not call for the calculation of the inverse of any matrix

except a diagonal matrix. This is far easier to calculate than the inverses

of symmetric or other square matrices. The method is of considerable practi-

cal importance because, with the increasing availability of high speed com-

puters, most of the arbitrary factor loading matrices calculated will be of

the principal axis or basic structure type.

17.4.2 The Caputational Equations

17.4#2a Defimition of Notation

a is the principal axis factor matrix.

8 is that part of the basic diagonal matrix of R corresponding to a.

r is the correlation matrix of the reference axes.

b is the simple structure factor loading matrix.

17..b The Equations

G a1 f (17.4.1)

C - G (17#4.2)
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* PD (17. 4.4)

H C CD (17.4.5)

r D DSD (17.446)

b = a H (17.4o7)

17.4.3 Computational Instructions. The computations in this method

are relatively simple.

We begin with Eq. (17.4.1). This is simply the product of the trans-

posed principal axis factor loading matrix postmultiplied by the binary hypo-

thesis matrix f.

Next we calculate the C matrix in Eq. (1.7.4.2). This is the G matrix

of Eq. (17.4.1) premultiplied by the reciprocal of the basic diagonal cor-

responding to the first three principal axis factors. In other words, this

basic diagonal includes only the basic diagonal elements of the correlation

matrix corresponding to the three factors which have beet solved for.

Next we calculate Eq. (17.4.3). This is the minor product moent of

the C matrix calculated in Eq. (17.4.2).

We then calculate a diagonal matrix whose elements are the reciprocal

square roots of the diagonal elements of S calculated in Eq. (17.4.3). ThIs

is indicated in Eq. (17.4.4).

Next we calculate the transformation matrix R as in Eq. (17.4.5). This

is the matrix C of Eq. (17.4.2) postmultiplied by the diagon l matrix of Eq.

(17.4.4). It will be noted that this cmutaion was tionai in th previous

method. Here, hovever, it is required for further calculations, as v1il be
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±nduited for, Eq. (17.4-7).
The neut step is to calculate the correlation of the simple structure

~~ ~ ~ Eq. (17..4.6). Hpre the mt4 S o q

(,17.4.3,) is pfet e a Po~tlu p d by the d±jSp ~ f q (17.4.4).
As seen frum Ecs. (17.4.,3), (17.4.4), and (17.4.5), r cod also have been

calculated by taIng the minor product moment of the H matrix in Eq. (17.4.5).

However, this w ould have meant the multiplication of square matrices, whereas

the cW-putations in Eq. (17.4.6) require only operations on the symmetric

matrix S by diagonal msxtrices.

Eq. (17.4.7) gives, finally, the simple structure factor loading matrix.

This is the principal axis factor loading matrix postmultiplied by the trans-

formation matrix H of Eq. (17.4.5). This matrix now is the best least square

approximation to the scaled binary hypothesis matrix F in which the scaling
is such as to mae the column vectors of H in Eq. (17.4.5) norm.

17.4.4 Numerical Exwmple. We e as numerical data for this illustra-

tion the principal axis factor loading matrix calculated in Chapter 8. This

is repeated for convenience in Table 17.4.1, together with the first three

basic diagonals in the top row. The binary hypothesis matriUx is the same as

given in the previous section. This hypothesis assumes that no variable has

fator loadngs in #owe tan one factor.

Table 17.4.2 gives the product of the trans.ose of the matrix in Table

17.s.l psta lJ.ed by the biAr hypothessp tiox

Table 17.*4.3 is the product C of the matrix of Toble 17.4.e, 'prmnLti-
plied by the inverse of a diagonal matrix constituted tfo the basic diAepa

elements at the top of Table 17.4.1. These calculations are indcated by Sq#

,I
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* (17.4.2).

Table 17.4.4 is the minor product moment of the matri C: calculated in

Table If .5

Table 17.4.5 is the matrix obtained by postmu4lying the m,& C f

Table 17.4.3 by the inverse of a diagonal matrix whose elements are from the

diagonal of the matrix in Table 17.4.4. This gives the transformation H in-

dicated by Eq. (17.4.5).

Table 17.4.6 is the simple structure factor loading matrix. It is the

product of the principal axis factor matrix of Table 17.4.1, postmiplied

by the matrix H of Table 17.4.5. This product is indicated by Eq. (17.4.7).

The correlation matrix r of Eq. (17.4.6) is not ealculated in this

numerical example.

@ •
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Table 17.4.1 - First Three Baeic Diagonals and Principal
Axes factor Vectors

3.749I .53
" 0.740o0.4y8 ,o.3 2,73 0 0406

0.556 --0.69 0.068
0o04600 -o,1~44 o.181
0.518 -041,94 0.18.8
o.64o o.0 0.5 88
o.61.5 0.66 -o.621
0.75 -o.034 -0.369

Table 17.4.2 - Matrix 0 a f

2.23iQ0 1,5W700 1.97000
1,2600o- -2079 0. - '2- 00

l~0T00 .4"70 -1.51800

Table 17.A.3 - Matrix C = E"' G

0.59448- 0.408 0.52547
o.618o05 -l1 0.10,341
0.809 0.312832 -1. 1855?

Table 17.4.4 - M~atrix S -- C 0

.01 1 -0.97910
"0581 -0.27 b0 1.69240
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TPable 17,4.5 -Transformation M~atrix U C D-2

0.50420 o.788 0.40592
0, 5@389 .0.8W-9 0.0794,9
0.6865 O .28661 o0.9113

Table J4l.4.6 - Si4upe ft-rctue, Katrx, b, H

o.860 -0.081 0.010
0.'"', "0.068 0.043
o.894 0.150 -o.o54
-0.01,3 0.795 0.111
-0.032 0.87 -000.027 0.5 -0.017
-0.09 -0.0,11 0.601
'0-0-0 -0.105 0.OO

61

4-.1,0 0
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17.5 The Arbitrary Factor Matrix

17.5.1 Characteristics of the Method. This method is more general than
the two previous methods in that it applies to any factor matriX, :g

the principal , centroid, gropingt, and multiple group marice as special

cases. However, the method includes a slight modification of the previous two

methods. This modification is desirable in most transformation solutions, al-

though frequently it makes very little differenceand it has been omitted from

the two previous methods in order to simplify computations.

In this method, the arbitrary factor loading matrix is normalized by

rows--that is, by variables--before transformation operations begin upon it.

The reason for this is that all of the tests will then be given equal weight

in the transformation solution. In most of the arbitrary type solutions which

are designed primarily to find the minimum number of factors which can ade-

quately account for a correlation or data matrix, all of the variables do

not account for the same amount of variance in the factor matrix. In other

words, what have been called the conunalities of the variables, or the sums

of squares of factor loadings for a given variable, will vary considerably

from one variable to another. Therefore it is considered desirable to norm-

alize the rows, or to make all of the test vectors of unit length. The unit

length vector will be recognized by some as a geometric concept. We shall

not, however, develop this concept further, since it would contribute to a

confusion of symbolic systems. From the algebraic or arithmetic point of

view we can simply state that we wish each of the teSss to carry uwit weight

in the determination of the transformation. It may be recalled that in Chapter

15, for the comnunality type scaling method, the a factor loading matrices



satisfy this condition. That is, for any given number of factors, the

sums of squares of rows of the a matrix are all equal to L.

17.592 The OfputatftoaL ZquaiolsI .17.5.24, D nfti n of io-t-t en

a is an arbitrary factor matrix.

f is the binary hypothesis matrix.

r is the correlation of the simple structure reference axes.

H is the simple structure transformation matrix.

b is the simple structure factor matrix.

17.5.2b The Equations
4 1

D - ,(17.51)

A = D a (17.5.2)

G = A' f (17.5.3)

C A' A (17.5.4)

S --- 1"  (17.* .5)

g = M" M (17.5.6)

D 1 D 7..7)tS
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H M MD (17.5.8)

r H' H (17.5-9)

b - AH (17.5.10)

17.5.3 Computational Instructions. In this method we assume that all

of the computations for an arbitrary factor matrix have been completed and

,that we start with this arbitrary matrix, however arrived at.

The first step in the calculations is indicated in Eq. (17.5.1). Here

we calculate a diagonal matrix whose elements are the reciprocal square root

of the diagonal elements of the major product moment of the arbitrary matrix

a. This means, of course, that we must calculate the sums of squares of row

elements for the arbitrary factor matrix a. These are what are called the

communalities of the variables based on the particular factoring solution.

The second step is to calculate the normalized factor loading matrix A,

as indicated in Eq. (17.5.2). This is given by premultiplying the arbitrary

factor matrix by the diagonal matrix in Eq. (17.5.1).

Eq. (17.5.3) is the minor product of the matrix in Eq. (17.5.2) and the

hypothesis matrix f.

We then calculate, as shown in Eq. (17.5.4), the minor product moment

of the matrix A given by Eq. (17.5.2). This we call C.

Next we calculate a matrix H which is the G matrix of Eq. (17.5.3) Pre-

multiplied by the inverse of the matrix C in Eq. (17.5.4).

We then calculate Eq, (17.5.6), which is the minor product moment of the

matrix calcuiated in Eq, (17.5.5). This we call &.
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Next we calculate the diagonal matrix of Eq. (17.5.7). This is simply

L a matrix whose diagonal elements are the reciprocal square roots of the di-

agonal etftentw ,ofthe ma0trx T calculeated i Eq. (17.5.6).

We now calculate tbhe ransformation matrix H indicated in Eq. (17.5.8).

This is the matrix M of Eq. (17.5.5) postmultiplied by the diagonal matrix of

Eq. (17.5.7). The method of computation indicates that the column vectors

of the H matrix are normal.

Eq. (17.5.9) gives the correlation of the primary reference axes as the

minor product mcment of the transformation matrix H given in Eq. (17.5.8).

Finally, Eq. (17.5.10) gives the simple structure factor loading matrix.

This is obtained by postmultiplying the matrix of Eq. (17.5.2) by the trans-

formation matrix H #ven in Eq. (17.5.9).

17.5.4 Numerical Example

Table 17.5.1 gives the centroid factor loading matrix calculated in

Chapter 6, Section 3. The same binary hypothesis matrix is used as in the

previous two methods.

Table 17.5.2 gives the group centroid factor matrix normalized by rows,

as computed by Eqs. (17.5.1) and (17.5.2).

Table 17.5.3 is the minor product G of the normalized factor matrix and

the binary data matrix, as computed by Eq. (17.5.3).

Table 17,5.# is the minor product moment C of the nomalized facto r

matrix, as Indicated by Eq. (17.5.-4).

Table 17.5.5 is the inverse d" of the matrix of Table 17.5.4,

Table 17.5.6 is the matrix M calculated from the matrices of Tables

17.5.3 and I7.5.5, as shown in Eq. (17.5.5).
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Table 17.5.7 is the transfonation matrix H obtained by normalizing

the columns of M in Table 17.5.6 by means of Eqs. (17.5.7) and (17.5.8).

Table 17.5.8 is the simple structure factor matrix b obtained from the

matrices of Tables 17.5,2 and 17.5.7, indicated by Eq. (17.5.10). It is to

be noted that the matrix b may be premultiplied by the inverse of the diagon-

al matrix of Eq. (17.5.1). This procedure is preferred by some factor

analysts.

The correlation matrix r of Eq. (17.5.9) has not been calculated.
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Table 17.5.1 - Group Centroid Factor Matrix a

0.933 -o.068 0.002
0.93.6 -0,o48 0.033
o.914 115 -0.035
o178 0.840 0.7
0.107 0.885 o.o46
o.169 0870 -0027
0 ,0 0.165 0.777
0.333 0.087 0.800
0.397 0.283 o.667

Table 17.5.2 - Normalized Factor Matrix A

0.997p5 -0.07269 0.00al2
0.99807 -0.05118 0.03519
o.9946 0.10475 -0,3797
o,g0656 O.9776 O.08471
0,197~0:.99145 -0.05153
0.90-6 0.9820 -o.03045
o.0.191a3 09033

Q.87 0.0,9990 Q gift
0.48052 0.34e54 0.80732

Table 17.5.3 - Matrix 0 = A'

2.98688 0.51703 i.24654
0.00087 2-.947M1 0.63426

-o.ooo64 0.00273 2-62925

Table 17.5.4 - Wrix 0 - A'.A

3.59151 0.7L869 1.09087
0-7439 3:o045 0.536,50
1.o9o.7 0.53650 e.32504

Table 17o5 5 - Mdatrix 0

0.1n -o.,okog -o.0 ,3
.0.Q&023 040~7 4.65 M0

0.s1 33 0020 .03
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Table 17.5.6 - w4bri~x m=

1.=098 "0.0o466 0,00268

-0 17957 
Q -99 ,-- 9 0.-00883

Table 17.5.7 -T Banfrmat4Q Matrix H =M, DM

0.90706 -0.00-436 0 -0007
.0. R7 0.97510 0.007
-0.58828 -0.-22171 0.99997

Table 17.5.8 - S±jple Structure Factor Matrix b A A

0.9-16 - 0. 076 o,.oo4
0.900o -0.062 0.037
094 0.1-Q6 -.

-0.004 0 .901 0.93
-00.055 0.19t -0.043
0.02 0.96 -0.022
-004 -0.0 5 090
-0.026 -0.108e 0.9120
o.o67~ 0.15 0.811
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17.6 The Zero Partial Sum Transformation

17.6.1 Characteristics of the Method. As indicated earlier in this

Nchapter, the rationale of this procedure is to find a transformation such

that, for any given factor vector, the factor loadings in the simple struc-

ture matrix corresponding to the zero elements in the corresponding vector

of the binary hypothesis matrix shall add up to 0. This restriction can be

imposed on any oblique solution for any arbitrary factor matrix. It applies

equally well to the multiple group, principal axis, and the other methods.

In general, this additional restriction tends to give smaller values

for the near-zero elements. However, there might still be considerable dis-

persion about the mean of 0 for these hypothesized zero elements. In any

case, the computations, as will be seen, are somewhat more involved than

they are in the methods previously considered.

17.6.2 The Computational Equations

17.6 .2a Definition of Notation

a is an arbitrary factor matrix.

f is the binary hypothesis matrix.

r is the matrix of correlations of the simple structure reference

axes,

H is the simple structure transformation matrix.

b is the silpe structure factor matrix.

17.6.b The Equations

a a a (17. I)
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t t' S (17.6.2)

a a t' (17.6.3)

Y a' 1 (17.6.4)

W al' f (17.6.5)

u = Yi' -w (17.6.6)

V = U DUjU (17.6.7)

Z = V DV,w (17.6.8)

C = W - Z (17.6.9)

M = "V' C (17.6.10)

7 14' M1 (17.6.11)

D = (17.6.12)

H M D4  (17.6.13)

r= D D (17.6.14)

b a H (17.6.15)

17.6.3 Computational Instructions. in this method we may begin with

any arbitrary factor loading matrix and operate directly upon it, or we may

first norma lize the rows of the factor loading matrix as we did in the method

of Section 17.5. In either ease, we have a binary hypothesis matrix f, as in



the previous three methods.

Eq, (17.6.1) gives the initial computations, which consist of the minor

product mcnent of the factor loading matrix. If this happens to be a princi-

pal axis matrix, then, of course, the matrix S on the left will be a diagonal

matrix.

We then indicate the triangular factoring of the S matrix of Eq. (17.6.1)

by Eq. (17.6.2).

The next step is to postmultiply the factor loading matrix a by the in-

verse of the upper triangular factor of the S matrix in Eq. (17.6.2). This

is indicated in Eq. (17.6.3).

Next we calculate a vector as indicated in Eq. (17.6.4). This is simply

a vector whose elements are the sums of column elements of the a matrix in

Eq. (17.6.3). It is, of course, the transpose of the S matrix of Eq. (17.6.3)

postmultiplied by a unit vector.

Next we calculate the minor product of the a matrix of Eq. (17.6.3) by

the hypothesis binary matrix r, as indicated in Eq. (17.6.5). This is the

matrix W on the left of Sq. (17.6.5).

We then calculate the matrix U as indicated in Eq. (17.6.6). Each

column of the U matrix in Eq. (17.6.6) is obtained by subtracting from the

Y vector calculated in Eq. (17.6.4), the corresponding W vector from the

matrix calcated in Eq. (17.6.5). This is given in matrix notation on the

rigt of Eq. (17.6.6) as the major product of the Y vector of Eq. (17.6.4)

by a unit row vector less the matrix W of Eq. (17.6.5).

We now normalize the column vectors of U calculated in Eq. (17.6.6), as

indicated in Eq (17.6.7). We call this the V matrix. The right side of Eq.
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(17.6.7) shows the V matrix of Eq, (17.6.6) postwultpl~ed by the reciprocal

square root of the diagonal of the minor product moment of U. It is of

course, not necessaxty to catoulate the entire product moment of U, but only
the sums o sques oQ column eements, in order to get the D matrix used

in Eq. (17.6.7).
In Eq. (17.6.8) we calculate the matrix K, which is the V matrix of Eq.

(17.6.7) postmultiplied by a diagonal matrix, Now the diagonal matrix is

made up of the elements of the diagonal of the minor product moment of the

V matrix of Eq. (17.6.7) and the W matrix of Eq. (17.6.5). Here again, it

is not necessary to calculate the minor product moment but only the diagonal

elements consisting of the minor products of corresponding columns of the

V and the W matrices.

The next step is indicated by Eq. (17.6.9). This is the matrix W of

Eq. (17.6.5) minus the Z matrix of Eq. (17.6.8). This we indicate as the

C matrix.

Next we calculate the matrix M indicated in Eq. (17.6.10). This is

obtained by premultiplying the C matrix of Eq. (17.6.9) by the inverse of

the upper triangular factor of the matrix E in Eq. (17.6.2).

We then calculate the minor product moment i of the matrix M calculated

in Eq. (17.6.10), as indicated in Eq. (17.6.11).

The next step is to calculate a diagonal matrix D, whose eleents are

the reciprocal square roots of the diagonal elements of y calculated in Eq.

(17.6.11).

We calculate the transfoation matrix H as indicated in Eq. (17.6.13).

This consists in normalizing the elements of the M matrix of Eq. (17.6.10)
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as shown on the right hand side of Eq. (17.6.13). The M matrix is post-

multiplied by the reciprocal square root of the diagona eaements of its

The cfcu4 oQ or the oorrelations among the primary reference axes

are indicated in Eq. (17.6.14). Here we pre- and postmultiply the _ matrix

of Eq. (17.6.11) by the D matrix of Eq. (17.6.12).

Finally, we calculate the simple structure factor loading matrix as in

Eq. (17.6.15). As in previous methods, we postmultiply the arbitrary factor

loading matrix by the transformation matrix H calculated in Eq. (17.6.13).
17.6.4 NUmerical ExaLe

We use the same group centroid factor patrix as in the preceding section.

The tables for this example will not be discussed in detail. We merely

give below the table number and the corresponding equation number where such

an equation is given.

Table No. Equation No.

17.6.1 (17.6.1)

17.6.2 (17.6.2)

17.*6.3 ----

17.6.4 (17.6.5)
17.6.5 (17.6.6)

!7.6.6 (17.*6.7)

17.6.7 (17.6.8)

17.6.8 (17.6.9)

17.649 (17.6.10)

17.6610 (17.6.11)

17.6.11 (17,6.i3)-

17.6.i2 (17.6.15)



It is of interest to note that the elements for each vector of Table

17.6.12 corresponding to the zero element in the corresponding binary hypo-

thesis vectov, atua4 do, sum to 0.

Ih 'l



Table 17.6.1 -Matrix S a/ a

3.0107 0.65a75 0.79188
0-5835~ Z.380%6 0 457794
.79188 eo. 3774 1-.69911

Table 17,662 - Matrixt

1.74100
0.30 1.50610
o,.45484 o.1-4968 1.21236

Table 17.6.3 - matrixt'

0. 57438
-0.12787 0.66397
-0.1,9970 -0.08197 o.8e484

Table 17.6.4 - matrix w = a~' f
i0s

1.5,9851 0.126077 0. 60885
.005~654 1.66494 0.21968
-0055570 -0.30359 1.59539

Table 17.6,5 - Matrix U = Y 1' W

0.86962 2.20735 1.85928
1.88462 -o0.15686 1-30,840
1.29200 1.05969 -0.85,909

Table 17.6.6 - matrix v = ufU

0.3556,9 0.902,5 0.76501
0.77085 -0-05600 0.5-3835
o. 5s846 o.4v$44 -0-35-347



37

Table 17.6.7 - Matrix Z = V D vtw

0.00003 0.01195 0.01538
o.oooo6 "0.00074 oxo82
0.oo004 ooo563 o0o711

Table 17.6.8 - Matrix C = W - Z

1.59848 o.2.4882 0.59346
-o.35660 1.66568 0.20885
-0.55574 -0.30901 1.60250

Table 17.6.9 - Matrix M = V-1 C

1.07472 -0.0o86 -0.00586
-0.19121 1.13129 0.00731
-o.45839 -0.25489 1.32180

Table 17.6.10 - Matrix y = M1 M

1.40172 -0.10847 -0.61359
-o.10847 1.34485 -0.32$859
-o.61359 -0.32859 1.74723

1

Table 17.6.11 - Matrix H M D"-6
--'

0.90775 -0.00721 -0.00443
-0.1615l 0.97552 0.00553
-0.38718 -0,21979 0.99997

Table 17.6.12 - Matrix b = a H

0.857 -o.o74 -0.003
0.845 -0.06i 0.029
0.825 0.113 -0.038
-0.002 0402 0.077
-0.098 o087,3 -0.042
•o.023 o.8 -o.o02
-0.02-8 -0.019 0.776
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17.7 The Orthogonal Transformation Matrix

17.7.1 Characteristics of the Method. As indicated earlier in this

chapter, it is sometimes desirable to impose the condition of orthonormality

on the simple structure transformation matrix. This restriction can be used

on any type of arbitrary factor loading matrix which is to be transformed to

a simple structure hypothesis matrix. The orthonormal restriction has not

been generally used, however. Nevertheless, it has a clear advantage over

oblique methods when applied to the principal axis factor loading matrix for

which a simple structure binary hypothesis matrix is available. Then the

simple structure factor score matrix whose solution we shall consider in a

later chapter is an orthonormal matrix. This means that the factor scores

are uncorrelated in both the unrotated and the rotated solutions.

One characteristic of this method is that it is much more laborious

computationally,and therefore not recommended for desk computers. The method

requires successive solutions of the basic structure of certain matrices

which are required in the repeated approximations to the final orthonormal

transformation matrix.

17.7.2 Computational Equations

17.7.2a Definition of Notation

a is an arbitrary factor matrix.

f is the binary hypothesis matrix.

r is the correlations of the simple structure reference axes.
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H is the simple structure transformation matrix.

b is the simple stzucture factor matrix.

I17.7.2b The Equations
= a/ f (17.7.1)

G = 7Df (17.7.2)

i-i

ci C a - 2 q  (17.7.4)

Ii (17.7.5)
Hi = Ci Qi 6,Q1

bi  = a Hi (17.7.6)

r = Hf' i  I (17.7.7)1

17.7.3 Computational Instructions. The computational instructions

for this method are brief, but the actual computations can be lengthy even

on high speed computers if the number of variables and the number of factors

are moderately large, such as those encountered in experimental investiga-

tions.

The method consists in a set of successive approximation cycles begin-

ning with any arbitrary factor loading matrix which may or may not be normal-

ized by rows, We have given a binary hypothesis matrix, as in the other

methods.
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We begin with Eq. (17.7.1), which gives the matrix 7 as the product

of the binary matrix premultiplied by the transpose of the factor loading

matrix,.

We then define a scaling of the _ matrix as in Eq. (17.7.2). The scal-

ing diagonal is simply the diagonal matrix of the minor product moment of the

hypothesis matrix. If this happens to be one in which there is only a single

1 in each row, then each diagonal element is the reciprocal of the number of

l's in the corresponding column of the binary matrix.

We next indicate an iteration cycle by Eq. (17.7.3). Here we have on

the right two terms. The first of these includes the preceding approxima-

tion to the simple structure factor loading matrix. This first term is an

approximation to the simple structure factor matrix premultiplied by the

transpose of the arbitrary matrix. When i = 1 the approximation to the

simple structure matrix, bo, may be taken as the simple structure matrix

arrived at by any one of the four preceding methods. The second term on the

right is the G matrix calculated in Eq. (17.7.2), postmultiplied by a diagon-

al matrix whose elements are the diagonal elements of the minor product of

the previous approximation to the simple structure factor matrix and the hy-

pothesis matrix.

We indicate the minor product moment of the matrix calculated in Eq.

(17.7.3) by Eq. (17.7.4). Eq. (17.7.4) also indicates the basic structure

solution for this minor product moment. For each approximation i we calcu-

late all the vectors of the basic structure factors 62 and ,.

Eq. (17.7.5) indicates the ith approximation to the orthonormal trans-

formation matrix. This is obtained, as indicated on the right, by multiplying
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from left to right as follows: the C matrix by the Q matrix by the inverse

of the 4 matrix by the transpose of the a matrix

Finally, we indicate the ith approximation to the simple structure

factor lo4ding matrix by Eq; (17.7.6)o This is the arbitrary factor matrix

postmultiplied by the ith approximation to the transformation matrix solved

for in Eq. (174.65).

This iteration procedure continues until, according to some criterion,

the approximations are close enough. Presumably, the trace of the matrix

given in Eq. (17.7.4) would provide a satisfactory criterion. When this

trace does not change by more than a specified amount from one approximation

to another, we may discontinue the computations.

Eq. (17.7.7) assumes that the computations have stabilized, and there-

fore we have the minor product moment of the current H or transformation

matrix. This will be a check on the computations and by definition this

should be an identity matrix.

17.7.4 Numerical Example. We begin with the same group centroid matrix

and binary hypothesis matrix as in the previous section.

Tables 17.7.1 and 17.7.2 show the coputations indicated by Eqs. (17.7.1)

and (17.7.2), respectively.

The remaining tables are for the 10th approximation, as follows:

Tables 17.7.3 and 17.7.4 give the computAtion indcated by Eq. (17.7.3).

Table 17.7.5 gives the minor product moment of the matrix C in Table

177 *4.

Table 17,7.6 gives the matrix (c' c)4 2 which is required

in Table 17,7.7 and Eq. (17.7,5).



* Table 17.7.7 gives the approximation to the orthogonal tranisformation

matrix H as indicated by Eq. (17.7.5).

Table 17.7.8 is the approximation to the simple structure factor matrix,

as indicated by Bq. (17-7.6).
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Table 17.7.1 - Matrix 7 a' f

2.78300 o.45400 1.06ooo
-0.00100 2.59500 0.53500
0.00000 0.00000 2.24400I Table 17.7.2 - Matrix G = ' D f

o.92767 0.15133 0.35333
-0.0033 0.86500 0.17833
0.00000 0.00000 0.74800

Tabl.e 17.7.3 - Matrix a' bi.1 for i = 10

o.62649 2.0.184 -2.37365
2.39956 o.7o41 -0.50667
0.56197 1.82739 0.04159

Table 17.7.4 - Vector DbI l.J and Matrix

Ci  = a/ bi.1 - G D.! f for- 1 1O

-o.o43 -o.o44 0.040

o.66639 2.03846 -2.38776
2.39955 0.40826 -0.51379
0.56197 1.82739 0.01172

Table 17.7.5 - Matrix C' C for i = 10
i

6.51772 3.36497 -2.81748
3.36497 7.66132 -5.05569
-2,81748 -5.05569 5.96551

Table 17.7.6 - matrix for 1 10

0.44064 -0.07679 0.06e05
-o.07679 0.50770 0.2,2263
o.o6Z205 0.2-2263 0.5 089
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Table 17,7.7 - Matrix H 0 Cq AQ Q1 for i 10

-0.-01105 o0.4 5218 -0.89184
0.99410 -0.0l13,7 -0.05867
0.-10803 0.88723 0,448-51

Table 17.7,8 - Simple Structure Approximae ion

bi = a Hi for i 10

-0.078 o.430 -0.827
-o.o54 0.457 -0.817
0.40 0.372 -0.838
o.841 0.069 -0.175
0.874 -0.073 -0.168
o.86o -o.o07 -0.214
o.2,44 o.8n4 o.o4
0.169 0.852 0.057
0.349 o.745 -0.072
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17,8 Mathematical Proofs

17.8.1 The ultiple Group Matrix

Given the correlation matrix Rf and the binary simple structure hypo-

thesis-matrix 1, let

F R f (17.8.)

and

S F' f (17.8.2)

t t' = S (17.8.3)

Then the multiple group factor matrix is well known to be

a

a = F t' 1  (17.8.4)

Assune now we wish to find the simple structure matrix b of best fit to f.

We consider

all = b (T .5

and

b-fD = 6 (,7.8.6)

where D is diagonal and where for H in Eq.. (17,8.5) we have

We wish to minimize
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trE'e (17f8e8)

The s&ltion is well tnown to be

H - (a' a) " a' f D (17.9)

From Eqs. (17.8.2), (17.8.3), (17.8.4), and (17.8.9)

H = t' (F' )' S D (17.8.10)

Let

F' F = G (17.8.11)

From Eqs. (17.8.3), (17.8.10), and (17.8.11)

H'H DS e S e SD (17.8.12)

Let

c --a s (17.8.13)

and

g sC (17.8.14)

From Vqs. (17.8.7), (17.8.12), (17.8.13), and (17.8.14)

H' H = DaCD (17.8.15)

D =- D2(78.)
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From Eqs. (17.8.4), (17.8.5),(17.8.ll), and (17.8.16)

b F C D- (17.8.17)
gC

17.8.2 The Prineipal A s Matrix

Given the principal axis factor matrix

a = (17.8.18)

and the binary hypothesis matrix f, consider the least square transformation

a l b (17.8.19)

such that in

b -f D - (17.8.20)

The trace of 6VE is minimized with a diagonal D such that for H in Eq.

(17.8.19) we have

D H (17.8.21)

From Bqs. (17.8,19) and (17.8.20)

a H-fD - (17.8.22)

The solution for H is obviously

H (a' a) ' f D (17.8.23)

Prom flq. (17.8618) in Eq, (11,8.25)

H ~a' f (17.8.24)
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* From Bq. (17-8.24)

H' H =D (fl a) 5-2 ('f) D (17.8.25)

Let

a' f = G (17.8.26)

6' G C .(17.8.27)

From Eqs..(17.8.25), (17.8.26), and.(17.8.27)

I' H = DC' CD (17.8.28)

From Eqs. (17.8.21) and (17.8.28)

D = D1C (17.8.29)

From Eqs. (17.8.24), (17.8,26), (17.8.27), and (17.8.29)

II = C D (17.8.30)

17.8.3 The Arbitrary Matrix

Let a be any factor loading matrLx, f: the binary hypothesis matrix, and

consider

A f D2 Ia i8.1

so that the rows of A are nonalized.

Consider

A H b (17,8.32)
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and

b f D e (17.8.33)Iwith, H dete ie. thwt g~ s minjm giz , go_ and P Is a dias such tha

DI IH (17.8.34)

Then the solution for H is well known to be

H = (A' A)' A' f D (17.8.35)

Let

M = (A' A)' A' f (17.8.36)

From Eqs. (17.8.34) and (17.8.36)

i (17.8.37)

and from Eqs. (17.8.35),(1768.36), and (17.8.37)

H M MD (1,7.8.38)

17.8.4 The Zero Partial Smu Simple Structure Matrix

Given the arbitrary factor matrix a and the binary hypothesis matrix f,

let

L - i 1' - f (17.8.39)

be called the supplementary matrix to f. Consider

a M t: b (178.-40)
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and

b-f (17.8. 41)

with thpe restrioion1 that

-

Db'L = 0 (17.8.42)

That is, the hypothesized O's in f sum to 0 in b for corresponding columns.

From Eqs. (17.8.40), (17.8.41), and (17.8.42) we write

tr (V' 6 - 2 Db L DX) = (17.8.43)

where D is a diagonal matrix of Lagrangian multipliers.

It will be simpler now to consider Eq. (17.8.43) with respect to each

M. vector separately. From Eqs. (17.8.40), (17.8.41), and (17.8.43)

M' a' aM -2 M . a' f. + f/ -2 M' a' L.

(17.8.44)

Differentiating Eq. (17.8.45) symbolically with respect to MI and equating

to 0 gives

-- (a' a M -a' f -a' L. 0)= (17.8.45)
M". A. A~ iX

F,.i (a' a) ' (a' a) (17.8.4)

Premuitiplying Eq. (17.8,46) by ' a and using Eqs. (17.8640) and (17.8.42)



L a (a' a)" a'I.
ai a"

Let

t t' a, a 

a = a t' (17.8.49)

Using Eqs. (17.8.48) and (17.8.49) in Eqs. (17.8.46) and (17.8.47), we get,

respectively,

M t' (a' f a' L ) (17.8.50)M.i l (a f~.ii

L l a a'f

'i La i (17.8.51)
L' a a/LA

Using Eq. (17.8.51) in Eq. (17.8.50)

a/ L Ll a a f.
' t. ('/ f i A . (17.8.52)
LM a a/ L

or

a' L L' a
M.i t' -(I ) . f (17.8.53)

L'. a ' L.

Let

a' (17.8-54)

* v ± (17-8-,55)

L~:i = .±

a ~ \/~ ~
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'. =w (17.8.56)

From DQS. (17.855), and (17.8.56) in Eq. (17.8.53)

(I v (17.8.57)

Going now to the complete matrix notation, we have from Eqs. (17.8.54),

(17.8.55), and (17.8.56), respectively,

c' L = U (17.8.58)

v - u uu (17.8.59)

a' f= w (17.8.6o)

From Eqs. (17.8.39) and (17.8.58)

U = a,' (i i' - f) (17.8.61)

From Eqcs. (17.8.60) and (17.8.61)

U = '1' -W (17.8.62)

Or, if we let

a, 1 = Y (17.8.63)

we have fran Eq. (17.8.63) in Eq. ( 17.8.62)

u- Yl' - w (17.8.64)
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Using Bqs. (17.8.58), (17.8.5,9), and (17.8.60) in Eq. (17.8.57)

M = t'-I (W - V DVW) (17.8.65)

If now we wish) to normaaJkze X. we have

H = M QM (17.8.66)

17.8.5 The Orthogonal Transformation Matrix

Suppose we have a binary hypothesis matrix f, and an arbitrary factor

matrix a which we wish to transform by a square orthonormal transformation

to the best least square approximation to f D where D is a diagonal to be

determined. We let

b = a H (17.8.67)

where by hypothesis

H' H = 1 (17.8.68)

The approximation equation is

b - f D = e (17.8.69)

We write the least square function with the constraint in Eq. (17.8.69) as

where X is a matrix of Igrangian mu.tiplIers and

k k (17.8.71)
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From Eqs. (17.8,67) and (17.8.69) in Eq. (17.8.70), we have

tr (H' al a -2 H' a' f D + D V f D - H' H?!) (17.8.72)

Differentiating Eq. (17.8,71) symbolically with respect to HI and equat-

ing to 0 gives

H- = 2 (a' aH - a' f D- H X) = 0 (17.8.73)SH'

To differentiate Eq. (17.8.71) with respect to D, we let

v = D 1 (17.8.74)

Using Eqs. (17.8.67) and (17.8.74) in Eq. (17.8.72) gives

= tr (b b - 2 V Db'f 1 + V' Dflf VD - H H X) (17.8.75)

Differentiating Eq. (17.8.75) symbolically with respect to VI and equating
D

to 0 gives

t -(-i-st = -2 1 - Dff VD) = 0 (17.8.76)

From Eq. (17.8.76)

D = DIf Dbt (17.8.77)

Using Eqs. (17.8.67) an (17.8.71): in E. (j.7.8.73)

a Io :-l ,I (17.8.78)

* Let



at  G (17.8.79)

Fr'om Eqs. (17.8,.78) and (1-7.8.79)

(a' Gbf (17.8.80)

ZC Let

al b GDbIf C (17-*8.81)

and

p L Q'I (17.8,.82)

Fro Eqs,. (17.8.81) and (17.8.82) in Eq. (17.8.80)

p a Q, H(17.8,.83)

Because of' Eqs. (17.8.68) and (17.8.72), the only X which will satisfy Eq.

(17-8.83) is

'2 (17.8.84)

Ther'efore) from Sm. (17.8.85) and (17.8.84)

H =p Q, (17.8.85)

Pora Eq- (17.0-82) ve have

q 4 C (17.8.86)

Prom Sq.7.17A882
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From Bqp., (17.8.85) and (17.8.87)

H - C Q' (17.8.88)I From fl'., (17.8.67) and (17,8.88) we have

b = a C Q 1 Q' (17.8.89)

We may start with the approximation

bo  =a (17.8.90)

Then

c = a a G Daf (17.8.91)

c{C, c (17.8.92)

H1  - (17-*8.93)

In general,

c i  = at bl i- Db f (1768. G9

ccl 2 (17.8.95)

Ki - C A± (17.8.96)

b (17.8.97)
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ANALYTICAL ROTATIONS

We saw in Chapter 17 that if we have some hypothesis as to which vari-

ables have high loadings and which have low loadifgs in each factor, we may

set up a binary hypothesis matrix and, by least square procedures with certain

constraints on the transformation, get the best approximation to the binary

matrix. We saw that the transformation matrices for these procedures are

not, in general, square orthonormal unless we impose this additional con-

straint, as in the last method of that chapter. In many cases, however, a

binary matrix may not be available, or it may be that the hypotheses are

poorly satisfied by the data.

It is therefore desirable to have analytical methods which are inde-

pendent of the a priori hypotheses of the experimenter. These analytical

methods presumably should approximate the criteria outlined in the introduc-

tion to Chapter 17. These are the criteria formulated by Thurstone (1947).

A great many methods have been proposed for analytical rotations to

simple structure factor loading matrices. The earlier methods were proposed

by Thurstone (1947), followed by several methods developed by Horst (1941)

and Tucker (1944) which were semi-analytical. Later Wrigley and Newhouse

(1952) proposed more completely analytical procedures. Then followed the

work of Carroll (1953), Saunders (1953),and several others. Perhaps the

best known methods are based on the work of Kaiser (1958).

In any case, although the mathematical thinking and development which

have gone into many of the proposed analytical methods is ingenious, these

methods have not resulted in the success which may have been hoped for. The
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methods in general are very laborious computationally, even with the high

speed computers, and often they do not give results which come close to sat-

At least two conditie should be satisfied by analytical methods, or

by any method if rotation. First, the factor loadings should be relatively

invariant with respect to the group of entities on which the data are collected.

Second, a subset of factor loadings should be relatively invariant, irrespec-

tive of which particular battery of variables includes that subset. This

latter criterion is subject to certain further qualifications, but one cri-

terion of a good transformation procedure is that the factor loadings of

variables be relatively invariant, both with respect to the sampling of en-

tities and the sampling of attributes.

One of the chief difficulties with most of the analytical methods which

have been developed is that they are greatly influenced by the particular

selection of variables which go into the correlation matrix. In this book

we shall not attempt to give an account of all of the analytical methods

which have been proposed. We shall, however, briefly describe the methods

of Professor John Carroll, whose pioneering and ingenious work may eventual-

ly result in more adequate methods.

Carroll (1953) proposed that we have a minimum number of negative factor

ioadings, and that such as weke present should be small. His criterion for

transformation was based on the sqpared factor loadings of the transformed

matrix. Therefore the sigs would not influence the criterion 6f goodness

of transformation. For this matrix he required in his early model that the

minor products 6f all possible pairs of vectors be a minimum. This meant,
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in effect, that for any pair there should be a number mf very small squared

factor loadings; there should be very few factor loadings which were high

for both factors; and that, for those which were high in one factor, the load-

ings should be low in the other, and vice versa. Here, then, are included
three of the Thurstone criteria of simple structure. These conditions would,

of course, satisfy the criterion that the minor product mment of the two

vectors of squared factor loadings should be small.

Carroll (1953) worked out an ingenious computational procedure for the

high speed computer for achieving suci4 a minimum for all pairs of factor load-

ing vectors. The difficulties with the procedure were, first, it was strong-

ly influenced by the particular variables in the set, and second, it resulted

in too few high factor loadings and too many negative loadings of medium size.

The transformation matrix in general was such that the correlations of the

reference axes were negative, and the correlation among the primary factors,

as discussed in Chapter 21, tended to be positive.

Later, Carroll (1957) changed this criterion by considering, not the

minimization of sums of minor products for all pairs of squared element factor

loading vectors, but rather the minimization of the covariance of these vec-

tors. This resulted in an overcorrection for the limitations of the previous

methods.

The earlier of these methods was called the quartimin method, and the

later one was called the covarimin method. Carroll found frOm empiriOal in-
vestigation that neither of these methods woed very well. The former pro-

cedure was biased in favor of reference axes, which were too low in eo6rrel-

tion among themselves, and the latter method resulted in reference axes which
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were too highly correlated. For the latter method, the large simple struc-

ture factor loadings tended to be too large and the small ones tended to be

considerabftgrewter thani 0.-

Carroll then formulated a co bination of the two methods so, as to neutra-

lize the undesirable effects of both. This combination of the quartimin and

covarimin methods has been called the oblimin method. The procedure still

left a decisimn as to just how to combine the two procedures, and a certain

amount of arbitrariness remained.

The great advantage of Carroll' s approach is that one need not hypothe-

size as to whether a transformation is orthonormal or oblique. The solution

itself purports to solve for the correlations among the simple structure ref-

erence axes and the primary factor axes. Unfortunately, even with the in-

genious rationale and the extraordinarily elaborate computational procedures

which have been worked out, the methods still have not demonstrated their use-

fulness for some sets of experimental data.

Currently, it appears that the work of Kaiser (1958) has had more practi-

cal impact on the work of factor analysts than that of other investigators.

The procedures of Kaiser specify an orthonormal transformation. This makes

the mathematics and the computational routines considerably more straight-

forward and amenable to the application of the basic structure concepts. It

does impose limitations on the results to be expected. In paticuar, the

possibility of achieving relative invariance of transformed factor loadings

with respect to both sample of entities and sample of attributes is more re-

mote than if more general transformation procedures were available. However,

since in this book our emphasis is on practical application, we shall give



our major attention to the methods developed by Kaiser, and variations of

these.

18.1 Cha~cei strcs of the Mthods

18.1.1 The Orthororma! 1ransformation Matrix. The methods we shall

consider do not admit of oblique transformations. The mathematical models

on which they are based, and the computational routines, have the restriction

of orthonormality built into them. While even yet a number of investigators

prefer the orthonormal type of transformation as more desirable from a philo-

sophical and scientific point of view, the tendency seems to be gaining ground

to prefer the earlier objectives of Thurstone in his relaxed oblique trans-

formations, which he was able to achieve by graphical methods" and shrewd

subjective judgment. Unfortunately, many of his followers were not able to

apply the same ingenious insights and judgnents in their efforts to use the

non-analytical graphical methods.

It is probable that the quest to relax the orthonormal transformation

by satisfactory objective analytical procedures will eventually triumph. If

so, it. will probably result in methods for objectively eliminating from the

variables contributing to the simple structure determination, those which

are most complex in structure and which tend to confuse the transformation

attempts.

18.1.2 The Optimizing Function. With the constraint that the trans-

formation shall be orthonormal, the class of solutions we shall discuss all

consider a transformed matrix whose elements have been raised to some even

power. This means that the new matrix has al1 positive elements.
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In particular, we may consider the matrix of squared elements of trans-

formed factor loadings, as did Carroll. Our attention, however, is directed

to only a single facator vector of these positive elements at a time. Speci-

fically, the oiptiriz~ing criterion which Kaiser (1958) suggested is that tho

variance of each such vector of positive elements shall be a maximum.

Since the elements are all positive by hypothesis, the maximum for each

vector would be achieved if all of its elements were either large or 0. There-

fore, in working toward the maximization of this variance criterion, one tends

to reduce the intermediate loadings to a minimum and to maximize the number

of large and small loadings. This agin satisfies one of the criteria of

Thurstone for simple structure, i.e., that each factor should have a relative-

ly large number of near vanishing elements, a limited number of very large

elements, with very few elements of intermediate size.

18.1.3 Iterative Type Solutions. All of the models conside0red in this

chapter differ essentially from most of those in Chapter 17 in that the solu-

tion for the orthonormal transformation matrix is arrived at by successive ap-

proximations. It will be recalled that in the last chapter only the last

model required successive approximations. This is the one in which the re-

striction of orthonormality of the tranaformation is imposed.

The varimax solution, as it was called by Kaiser and as developed by

him, consists of a large number of orthonormal transformations involvi g

only two factor vectors at a time. The procedure in general is to start with,

say, the first two factor vectors, and transform them by an orthonom-al trans-

formation so that the variance of their squared elements is a maximum. One

then proceeds with the new first and the third vectors, and applies another
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orthonormal transformation which satisfies the criterion of maximum variance

of squared elements for the transformed vectors. This procedure continues

for all possible pairs until the criterion of variances of squared factor

loadings c-eases to, improve

It can be seen that this would be an extremely laborious procedure for

desk calculators. Even for the high speed computers it can be expensive and

time-consuming if the matrices to be transformed are very large--for example,

of the order of 500 attributes by 20 or 30 factors. After the varimax cri-

teron is satisfied, the method of Kaiser requires the product of all of the

orthonormal matrices involved in the computational routine. This cumulative

product gives the orthonormal transformation which, when applied directly to

the arbitrary factor loading matrix, yields a transformed matrix satisfying

the varimax criterion.

18.1.4 Accumulation of Decimal Error. The method of Kaiser, because

of the very large number of individual computations going into the procedure,

each of Vhich involves rounding errors, is subject to the accumulation of

considerable decimal error if the number of variables is large. The methods

we shall outline use somewhat different approaches to achieve the varimax

criterion. They do not in general accumulate as much decimal error as those

of Kaiser. As a matter of fact, they are self-correcting with respect to

both decimal and computational error.

18,2 Knds of Methods

We shall discuss four variations of the methods proposed by Kaiser.

These we may call the successive factor varimax, the simultaneous factor

varlmax, the successive factor general varimax, and the simultaneous factor
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general va&imax.

18.2.1 Successive Factor Varimax. The successive factor varimax method

differs essentialkly from that of Kaiser in that we solve for one factor vector

at a time, rather than for all of them s-ltaneously. As each factor is

solved for, it satisfies the varimax criterion in that the variance of the

sums of the squared elements for a factor is a maximum. Having found this

factor, we find another in which the transformation vector is orthogonal to

the first. With this restriction, the variance of the squared elements of

the next factor vector is a maximum. We continue in this way until we have

found the last factor.

18.2.2 Simultaneous Factor Varimax. In this model we start with an

approximation of some sort to the simple structure matrix of factor loadings.

We then solve for a second approximation to the factor loading matrix which

will satisfy the varimax criterion. We thus proceed by successive approxi-

mations to get factor loading matrices which will yield better and better

approximations to the matrix which ultimately best satisfies the varimax

criterion.

The restriction for each approximation is always that the transfoma-

tion matrix for that approximation is orthonormal. The procedure therefore

yields all of the final simple structure factor loading vectors simultaneous-

ly, rather than one at a time,

18.2.3 The Successive Factor General Varimax. This method is like the

successive factor varimax, which gets one factor at a time and maximizes the

variances of the squared factor loadings, except that we require that some

even power of the factor loading elements be positive. This even power may
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be any value not less than unity. In particular, we can require that the

variance of the absolute values of the factor loadings be maximum.

18.2.4 Simultaneous Factor General Varimax. This model is similar to

the one discussed in Section 18,2.2 in that, by successive iterations, the

simple structure factor loading matrix is solved for by approximations to

all of the factor vectors at one time. It is similar to the model discussed

in Section 18.2.3 in that the criterion which is maximized is a generaliza-

tion of the variance of the squared factor loadings. Here again, we maxi-

mize the variance of some positive even power of the factor loadings, where

the power is not less than unity.

As will be seen in the mathematical proof, Section 18.7.4, one may take

a positive even power which in the limiting case approaches the absolute

value of the factor loadings. On the other hand, one could maximize the

variance of the fourth powers, or the four-thirds powers, or any other powers

in which the numerator of the exponent is even and the denominator odd and

less than the numerator. It can be seen that, if the numerator of the ex-

ponent is an even number approaching infinity, and the odd number is always

one less than the numerator, an element raised to this power would approach

the absolute value of the element.

18.3 The Successive Factor Varimax Solution

18.3.1 Characteristics of the Method. It has been indicated that the

successive factor varimax solution does not give the same answer as the method

of Kaiser, in which the transformations are made two vectors at a time. 
Actu-

ally, in the former case the factor loading vectors for the transformed 
solu-

tion tend to come out in the order of the variance of their squared loadings.
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This may not always be the case, as the final result may depend somewhat on

the approximation one starts with. There is currently no mathematical proof

to indicate whether, or under what conditions, this might be true.

Perhaps the chief advantage of this method is that the simple structure

factors tend to come out in the order of clarity of interpretation, so that

one may neglect the factors which appear later in the solution if they seem

to be too obscure or ambiguous. The method is different in this respect from

Kaiser' s, since the ambiguity of the simple structure factors for his method

seems to be spread over all the factors approximately equally.

18.3.2 Computational Equations

18.3.2a Definition of Notation

1a is the arbitrary factor matrix.

* H is the orthogonal transformation matrix.

b is the simple structure factor matrix.

b(2) is a matrix whose elements are the second powers of the

elements in b.

b ( 3 ) is a matrix whose elements are the third powers of the

elements in b.

18.3.2b The Equations

1 a' 1
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lVL =(18.3)

0H.1 (18.3-5 )

13 1

. .1 1 l0.1 (18.3.6)

U. a' 1' 11 (18.3.7)

a = u (48-3.8)

1u.1
1~.1 -(18.3.9)

2b. 1= aH. (18.3.10)

2.1) 1 1 . 1(2

.1 - b .1 1' (2 (18.3.11)
s .1 n

s U., 1(18'3.13

U-

(18.3 21g.)
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= -b H' l..6

2" 1. b .i. (18.3.1?)

iVL = mn V (8..m. 

. (18.3.-19)

i = ao i (18.3.20)

s . b(2)
s b(3) b 1 (18.3.21)s .i S s-i

s = a' s (18.3.22)

=a =/7 -7, (18.3.23)

U

ssui

bK~ = 5 i(18-3.24-)

s+lb.i ai' H. (1843.25)

a =a a - b H' (18.3.26)

18.3.3 Computational Instructions. We begin with an arbitrary factor

loading matrix a. Kalser has recommended, and the practice seems to be

generally desrI'ablej that any arbitrary factor loading matrix, before it is

transfo=med or rotated, should be normalized by row. We shall therefore as-

sume, in this and the suceeding models, that the arbitrary factor loading

matrices have been normalized by rows.
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The rationale for selecting the first approximation to the first trans-

formation vector is as follows. We assume that i~f there were, in the Set of

tests or measures , one which measured one of the primary factors ralher ac-

curately, it would have a relatively low correlation with the average of all

the variables. Therefore we calculate a normalized vector of the average of

the factor loadings by columns, as indicated in Eq. (18.5.1). The right

hand side of this equation gives in the numerator a column vector whose ele-

ments are the sums of the column elements of the factor loading matrix l.

As can be seen, the denominator scalar of this right hand term is the square

root of the minor product moment of the vector in the numerator. Therefore,

the W column vector on the left of Eq. (18.3.1) is a normal vector.

In Eq. (18.3.2) we calculate the vector iV. This is the factor loading

matrix 1a postmultiplied by the vector W of Eq. (18.3.1). This now gives a

vector of correlations of the average of all the tests with each of the

measures. Presumably, that variable which correlates lowest with this aver-

age would be a relatively pure measure of a factor.

We therefore look for the lowest element in the vector given by Eq.

(18.3.2). This is indicated in Eq. (18.3.3). lie use the subscript L1 to

indicate the position of this lowest value.

We then take the L row vector of the a factor loading matrix as the

zero aTproximation to the first vector of the transformation matrix H. as

indicated in Eq. (18.3.4).

Next we postmultiply the factor loading matrix by the vector indicated

in Eq. (18.3.4). This gives the first approximation to the first transformed

factor loading vector, as indicated in Eq. (18.3.5).
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Then we calculate the first approximation to a 1 vector, as shown in

Eq. (18.3.6). On the right hand side of the equation, the first term is a

vector whose elements are the cubes of the elements of the vector calculated

in Eq. (18.3.5). The second term on the right of Eq. (18.3.6) is the vector

calculated in Eq. (18.3.5),multiplied by a scalar quantity which is the aver-

age of the sums of squares of the elements of the vector in Eq. (18.3.5).

This second vector is subtracted from the first.

Next we calcul&te the first approximation to the U1 vector, as indi-

cated in Eq. (18.3.7). This is the transpose of the factor loading matrix

bostmultiplied by the vector calculated in Eq. (18.3.6).

We now calculate a scalar quantity as in Eq. (18.3.8). This is the

square root of the minor product moent of the vector calculated in Eq.

(18.3.7).

Next we calculate the first approximation to the first transformation

vector as in Eq. (18.3.9). The vector calculated in Eq. (18.3.7) is divided

by the scalar calculated in Eq. (18.3.8). We see, therefore, that the vector

calculated in Ec. (18.3.9) is a normal vector.

We now calculate the second approximation to the transformed factor load-

ing vector b 1 . As indicated in Eq. (18.3.10), we postmultiply the arbitrary

factor loading matrix by the vector calculated in Eq. (18.3-.9).

We continue to calculate successive approximations to the first trans-

formation vector 1.. and the first simple structure factor vector b., as

indicated in Eqs. (18.3.11) through (18.3.15). These equations are the same

as Eqs. (18.3.6) through (18.3.10), except that the prescript of 1 has been

ca nged to the genera. subscript 1) which means the s approximation.
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The stabilization limit may be based on the scalar a indicated in Eqs.

(18.3.8) and (18.3.13). When this scalar has stabilized to a sufficient de-
gree of accuracy, we may assume that the i vector is sufficiently accurate,

and therefore tbht the b vector is also suficie tly accurate.
We then calculate a residual factor loading matrix, as indicated in Eq.

(18.3.16). The first term on the right side is the factor loading matrix a

with a prescript 1. We use this prescript to show that it is the original

arbitrary factor loading matrix, rather than some residual matrix derived

from it. The second term on the right of this equation is the major product

moment of the factor loading vector b and the transformation vector H

This major product is subtracted from the factor loading matrix to give a

residual matrix 24.

We are now ready to begin the computations for the second simple struc-

ture factor vector b 2 , and the second transformation vector H. 2 We require

a first approximation to the H vector. This is accomplished by consider-
.2

ing Eq. (18.3.17). Here for the subscript i we substitute 2. On the right

hand side of the equation this gives as the first term IV, which we calcu-

lated in Eq. (18.3.2). To this is added bl, calculated in the previous

cycle of computations, to give the vector V with a prescript of 2.

We now consider Eq. (18.3.18) in Vhich the i subscript takes the value

of 2. This equation means that we find the sallest value in the vector cal-

culated in Eq. (18.3.17) and calli this the L Position.

Having identified this position, we then take as our zero awroximation

to the H vector the L row of the residual factor loading matrix e caleu-.2

lated in Eq, (18.3.16). This is indicated in Eq. (1803.19).U
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Next we calculate the first approximation to b as indicated in Eq.

(18.3.20), in which 1 = 2. The right hand side of this equation shows that

we posttlpy the matrix calculated in Zq. (18.3.16) by the vector forIi = 2 from Eq# (18-3.1,9),
For the computation of the s approximation to the ith transformation

vector H.., and the s+l approximation to the ith factor loading vector b...

we now have the series of equations (18.3.21) through (18.3.25).

Eq. (18.3.26) shows the general equation for calculating the i+l re-

sidual factor loading matrix a from the ith residual factor loading matrix

ia , ths ith factor loading vector b.i, and the ith transformation vector H..

18.3.4 Numerical Example. We shall use the same numerical example

throughout to illustrate the various models in this chapter.

We begin with the first three factors of the principal axis factor load-

ing matrix which are given in. Table 18.3.1.

Table 18.3.2 gives the final matrix H which transforms the arbitrary

matrix a to the varimax simple structure matrix b.

Table 18.3.3 shows the final approximation to the varimax fadtor load-

ing matrix. It can be verified that the rows of this matrix are normalized.

If desired, they may be scaled back to the variances of the rows of the

principal axis matrix whose transpose is given in Table 18.3.1.
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Table 18.3.1 - Transpose of Principal Axis Factor Loading Matrix

0.717 0.740 0.773 0.556 o.463 0,518 0.640 o.615 0.715
o.493 0.478 o.296 -0.649 -0,744 -o,694 0.080 o.166 -0,034
0,350 0.322 0.406 0.068 0.181 0.188 -0.588 -o.621 -0.369

Table 16.3.2 - Final Tr-rsfomtion Matrix H for Successive Factor
Variniax Solution

0.502 0702 o.5Q5
-0.842 0.531 0.098
o.199 0.475 -0.857

Table 18.3.3 - Final Varimax Factor Matrix b for Successive Factor
Varimax Solution

o.oj6 0.993 0,118
0.035 0.987 0.154
0.238 0.968 0.077
0. 978 0.091 0 o185
1.000 0,018 ooo6
0,995 0,095 0.036
04157 o.244 0.957
0051 0.2" o.966
0.390 0.384 0.837

C
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18.4 Simultaneous Factor Varimax Solution

18.4.1 Characteristics of the Method. The computational procedures

in this method are essentially different from those of the method just de-

j scribed. Successive Iterations are required, but we iterate simultaneously

to all of the factor vectors of the b or varimax matrix, rather than getting

one vector dt a time, This method of solution should give exactly the same

results, within limits of decimal error, as Kaiser's (1959) computational

procedure. It appears to have the advantage that the computations are self-

correcting and that it does not accumulate decimal error. The time required

for the computations, as compared with the Kaiser method, has not been ac-

curately determined, but it appear.s that for small matrices the Kaiser method

may be slightly faster, and for larger matrices this method may be slightly

faster.

One of the characteristics of the method is that each iteration requires

the basic structure solution of the matrix whose order is equal to the number

of factors. For high speed computers, however, this is not a serious restric-

tion, since the number of factors would ordinarily not be over 10 or 15 at

most, and available computer programs are extremely rapid for calculating

the basic structure factors of matrices of this order.

l8A.~2 comiputatio~1ai flqu t ons

18.4.2a Definition of Notation

H, b, '( 2 ) ) are the same as in Section.18.3.2a.
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18.4.2b The Equations
lb(3) lDb' (b

c  a/ (18.4.2)

C'1 C - Q 2 1Q (18.4.3)

2H = ((1c 1Q) Q' (18.4.4)

2b = a 2H (18.4.5)

i b( 3 )  b D i b  (18.4.6)

a, P (18.4.7)

i' c = Q i  2 iq ' (18.4.8)

i,H -((C 1) ) i'(.4)

i+b a jH (18.4.10)

18.4.3 Computational Instructions. We begin with a first approximation

to the simple structure factor loading matrix. This eouid be the normalized

arbitrary factor matrix itself. It may be better to start with a more ac-

curate approximation, such as some binary hypothesis method, as discussed in
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the previous chapter.

The first step in the computational cycles is indicated in Eq. (1.84.1).

On the right hand side of this equation we have as the first term a matrix

whose elements are the cubes of the elements of the first approximation to

the b matrix. The second term on the right is obtained by postnultiplying

the first approximation to the b matrix by a diagonal matrix. This diagon-

al matrix consists of the diagonal elements of the minor product moment of

this approximation to the b matrix, divided by a, the number of variables.

The next step is indicated in Eq. (18.4.2). Here we have the first ap-

proximation to a C matrix which is the minor product moment obtained by post-

multiplying the transpose of the a factor loading matrix by the 0 matrix of

Eq. (18.4.1).

The next set of computations is indicated by Eq. (18.4.3). We get the

minor product moment of the matrix calculated in Eq. (18.4.2) and find its

2
basic structure factors Q and , as indicated on the right hand side of

this equation.

We then get the second approximation to the transformation matrix, as

indicated in Eq. (18.4.4). Here we postmultiply the C matrix of Eq. (18.4.2)

successively by the factors Q, A, and Q1. This second approximation to

the H matrix is now orthonoxai.

The second approximation to the b matrix is given in Eq. (18.4.5). This

is the factor loading matrix a postuiltiplied by the matrix of Eq. (18.4.4).

The general equations for the i+l approximations to the H and the b

matrices are given in Bqo. (18.4.6) through (18.4,10), which are analogous

to Sqs, (18.4.1) through (18.4.5). The subscripts 1 and 2 have been replaced

by L and L+1,
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18.4.4 Numerical Example. We begin with the same factor loading

matrix in this numerical example as in the previous one.

Table 18.4.1 gives the final approximation to the varimax transforma-

tion matrix H. rntermediate approximations are not given, although they
Scould be readily outputed from corresponding Fortran progam.

Table 18.4.2 gives the final approximation to the varimax factor load-

ing matrix. Here, too, the outputing of intermediate approximations may be

readily inserted in the Fortran program. It can be seen that, aside from

the order of the factors, the loadings do not differ markedly from those in

the previous section. With other data the results may differ more for the

two methods. As in the previous section, the matrix is normal by rows.
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Table 18.4.1 -Final Approximati±on to Tran8formation Matrix HI
for Simutaneous Factor Varimax Solution

0.1, 0*0 !,i

Table 18.4.2 - Final Ap roximation to Vaimax Factor Matrix b
for Simultaneous Factor Va rimax Solution

0.980 0.001 0197
0.972 -o,0=7 o.234
0.9611 10.2 o.64
-0084 0.969 -0. 2
-0.026 0.998 -o.0 6,
-0.100 0.991 -0.08%
0.168 -0.'14 0-979
0.175 -0.008 0.98
0.3,8 -0.351 0.881
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18.5 The Successive Factor General varimax

18.5.1 Characteristics of the Method. This method is like the one dis-

cussed in Section 18.3, except that now instead of maximizing the variance

of the squared factor vector elements, we solve for one vector at a time so

as to maximize the variance of sme power of the elements in which the power

is the ratio of an even number to a smaller odd number. The computations

are essentially the same as for Section 18.3 with the difference that, hav-

ing chosen a particular poer, we have the problem of finding the required

powers of elements, either by means of tables of logarithmic and exponential

functions or by means of computer program statements.

18.5.2 Computational Eq LtioaS

18.5.2a Definition of Notation

1a, b. and H are the same as in Section 18.3.2a.

18.5.2b The Equations

s U 1 a 00A(18.5-2)

U/ s
Hi = i8



80

b a (18.5 5)0+ 1- s .1

ila iab. H (18.5.6)

18.5.3 Computational Instructions. In this model we may let the power

of the transformed factor loading elements be any positive number k greater

than unity which may be expressed as the ratio of an even to an odd integer.

We begin with Eq. (18.5.1), Here we indicate the s approximation to a

vector, which is analogous to the _ vector which we calculated in Section

18.3. We asswne that some Approximation to the transformed vector is avail-

able. As a matter of fact, we can use the methods of Section 18.3 to get this

approximation. We raise the elements to the 21t.1 power to get the first

term on the right of Eq, (18.5.1), in which the subscript . tak-es the value

1. The second term on the right consists of the approximation vectOr with

elements raised to the k-1 power and mltiplied by a scalar which is the mean

of the jith power elements of the vector.

Eq. (18.5.2) is obtained by postutip.ying the tranopooe of the arbit.

rary factor loading matrix by the s aiproximiation to the , vector to Sive

ansaapproximation to a U vector.

A scalar quantity is then oalculEatod as in ~q# (1.53)wich is the

square root of the minor product m ent of tie vector oild in Eq

(1.5 *.)



The vector calculated in Eq. (18.5.2) is divided by the scalar calou-

lated In Eq, (18.5.3) to give the a approximation to the first transforma-

tion vector ofkj) Us idkcatedd i*n= q. l85.

The s4i. app-roximnatdon to the first factor l-oadiag b vector is given by

Eq. (18.5.5). This is the factor loading matrix postmultiplied by the vector

calculated in Eq, (18a5.4). When the iterations stabilize sufficiently, as

indicated by some tolerance limit set on the a scalar' of Eq. (18.5.3), we

may take the resulting b approximation as the first simple structure factor

vector.

We then calculate a residuql matrix as in Eq. (18.5.6). This is ob-

tained by subtracting the major product of the first simple structure factor

loading vector and the corresponding transfo-rmation vector H from the arbit-

rary factor matrix -a.

We now operate on this new matrix with Eq-s. (18.5.1) throu*i (18.5.5)

in exactly the same way as we did on the original matrix. To get a first

approxdimation we may use the metod of Section 18.3.

The general equation for the i 1 residual of the arbitrary factor load-

Ing matrix a is given by Eq. (18-547).

18.5*4 Numerical Example. We begin with the same data as in Section

18-34 ad tao k 10.Rr eidct, -a terslso h ehd
183. adtae .- Hreweidiat nl te euls f h mthd

-The intermedate computations are not given.

Table 18,.*1 is the final approximation to th-e orthoomal trainsfornia-

tion matrix.

Table 18.569 is the final apro~dmaton to the varimax matrix bo It

must be remambered that this is the transformation such t-hat the Variance of
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the power of the elements in the b matrix is a maximum for each column--

with the restriction, of course, that the columns were obtained one at a

time. It is of interest to compare this matrix with Table 18.3.3 of Section

18,.4

,r,. .. . .. .... ..
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Table 18.5.1 -Final Approximation to Transformation Matrix

H for Successive Factor General Varimax: Method

vith k = 1

0.735 0.412 0.538
0.089 -0.84 0.526
-0.672 0.339 0.659

Table. 18.5.2 - Final Approximation to Varimax Factor Matrix

b for Successive Factor General Varimax Method

with k =10

0.358 -0.003. 0.934
0.395 0.010 0.919
0.349 0.223 0.910
0.356 0.93 4 0.003
0.171 0.985 -0.0-26
0.218 0.975 0.042

*. 10000 -0.004 -0.001
0.994. -0.110 0.010
0.957 0.246 0.154
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18.6 Simultaneous Factor General Varimax

18.6.1 Characteristics of the Method. This method is the same as the

one discussed in Section.18.4, except that now we maximize the variance of

any even power of the transformed elements we wish, as long as the power is

greater than 1. The method, like that of Kaiser (1958), selves simultaneous-

ly for all of the transformed simple structure vectors, rather than for one

at a time. It has the advantage that decimal error is not accumulated as it

is in Kaiser' s method. It has the disadvantage that, if the powers are not

whole numbers, either tables or library programs for computers must be used

in calculating these powers. However, this is not a serious disadvantage

with the computers, since simple Fortran statements may be written for any

specified power.

18.6.2 Computational Equations

18.6 .2a Definition of Notation

b, and H are the same as in Section 18.3.2a.

b is the s approximation to b.

b(2k 'l) is a matrix whose elements are those of b raised to thes 5

2k-l power.

sH is the s approximation to the transformation matrix.
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18.6.2b The Equations
b( -l) b~k l lb(k )

sr3 = - ) s n (18.6.1)

C a' (18.6.2)

s C sC = sQ sA2 sq, (18.6.3)

sH  = ((Sc sQ) sa ) sQ' (18.6.4)

s+b= a H (18.6.5)

18.6.3 Computational Instructions. In the example of the model dis-

cussed here, we shall again assume that it is the variance of the kth power

of the elements in the transformed factor vectors which we wish to maximize.

We may begin with the arbitrary factor loading matrix itself, presumably

normalized by rows. We consider Eq. (18.6.1) for the prescript s equal to 1.

The first term on the right is a matrix whose elements are the 2k-i powers

of the elements in 1 b. The second term on the right has for the first factor

a matrix whose elements are the k-i powers of the elements in b. This matrix

is postmultiplied by a diagonal matrix whose elements are the means of col-

umns of a matrix obtained by raising the elements of b to the k th power.

Eq. (18.6.2) indicates the computation of a matrix C. This is the trans-

pose of the arbitrary factor matrix, postmultiplied by the matrix of Eq.

(18.6.1).

Eq. (18.6.3) is the minor product moment of the matrix obtained in Eq.

(18.6.2), and also indicates the solution for the basic structure factors,
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Q and C , of this matrix. This involves, as in Section 18.4, basic structure

computations outlined in earlier chapters.

The calculation of the s approximation to the H matrix is given in Eq.

(18.6.4). This is obtained by postmultiplying in turn the C matrix of Eq*

(18.6.2) by the Q matrix shown in Eq. (18.6.3), by the inverse of the A_

matrix of Eq. (18.6.3), by the transpose of the Q matrix of Eq. (18.6.3).

The s+l approximation to the transformed factor loading matrix is given

in Eq. (18.6.5). This is the arbitrary factor loading matrix a multiplied

by the matrix of Eq. (18.6.4). A stabilization limit may be set on the sum

of the elements of the basic diagonal in Eq. (18.6.3). These will in gen-

eral increase asymptotically to an upper limit.

18.6.4 Numerical Example. We begin with the same principal axis matrix

as in the preceding sections.

Table 18.6.1 gives the final approximation for the transformation matrix

H.

Table 18.6.2 gives the final approximation for the varimax factor matrix

b. The factors can readily be identified with those from previous solutions

in this chapter, even though the results expectedly differ by more than deci-

mal accuracy.
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Table 18.6.1 -Final Approximation to Transformation Matrix H

for the Simultaneous Factor General Varimax

Solution with k -10-T
o.670 -o.4,76 -01,569
0.513 0.851 -0.108
0.-536 -0.220 0.815

Table 18.6..2 - Final Approximation to the Varimax Factor Matrix
b for the Simultaneous Factor General Varimax

Solution with kc 10
-3

0.982 0.002 0.188
0.,974 -0.017 0.224
0.963 -0.223 0.153

-0.089 0.971 -0.2-23
-0.028 0.999g -0.0o40
-0.1Q4 o.992 -0.07,6
0. l77 -0..123 0.,976
0.185 -0.017 0.983
0.328 -0.358 0.874
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18.7 Mathematical Proofs

.18.7.1 Successive Factor Varimax

Let

b = a H (18.7.1)

and b(2) be a matrix whose elements are the squares of those in b. Consider

the function

(2)' 1 l') b(2).1 1 1 - ma (18.7.2)

This is the well known varimax criterion of Kaiser (1958) which maximizes

the variance of the squared factor loading vectors in b. We impose the re-

striction that

H' H = (18.7.3)

We let

D b 1 = (18.7.4)

From Eqs. (18.7.1), (18.7.2), (18.7.3), and (18.7.4) we write

H' a# Db 11' a H 'HI H X (18.7.5)

.1 b. n b . 1

where XI is a Lagrangian scalar.

Differentiating Eq. (18.7.5) symbolically with respect to H' and equat-

ing to 0, we have

2 [(a' Db. (I n D a H.I - H. 1i3 = 0 (18.7.6)
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From Eqcs. (18.7.1) and (18.7.6)

(3). -' b"! (18.7.8)b! b

a'(3•.i " b.' 1 ) = H.(8I.8

-P b(3 ) b 1 b*1  (18.7.8)

FrM Eqs. (18.7.7) and (18.7.8)

a = H (18.7.9)

We start with a first approximation by considering, say.,

W a (18.7.10)

!= a W (18.7.11)

and find the smallest element in 1V, say 1VL . We may then let

6b. = a aL (18.7.12)

We have as the general iteration equations

b'• .I ,.1 S ,.1
Ssp.1 s . ,. 5.1 (18.7.14)

un

H611.1 (18.7.15)
sH' .1 a H .1(

b~h. = aH. (18.7.16)
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From Eqs. (18.7.1) and (18.7.6)

Ib -

a .(b.- 1 - .1 )~ = (18.7.8)

p2:. Let

= ~~ b *b1  (18.7.8).1 . .1 n

From Eqs. (18.7.7) and (18.7.8)

a, H., X.1 (18.7.9)

We start with a first approximation by considering, say,

W A 11 (18.7.10)

a aW (18.7.11)

And find the smallest element in iV, say Y L We may then let

a =a. (18.7.12)

We have as the general iteration equations

sb' b.

S0.1 .1 S 1sb( -. b -I __ 0 1 (18.7.13)

H - .l (18.7.15)

01b .1 a H (18.7.16)
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To get H2 we require that

H' H =0 (18.7.17)

H1 H =1 (18.7.18)

We could then write

2 02 .2 .1 12 .2 2HIH xH H (18.7.19)

where 02 is analogous to Eq. (18.7.2), and where X 2and X2are Lagrangian

multipliers.

Differentiating Eq. (18.7.19) symbolically with respect to H' and
-.2

equating to 0 gives, after solving for X 12 by means of Eq. (18.7.17),

(I-H. H'1) a' -H8 x20
.1 .1 ,~2 .2.X2(1.2)

where

b' b

b(3 -2 b .2 . .2 (18.7.21)

But from Eq. (18.7.1)

(I -H. H11)a' =a' -H. b' 1-.2

If we let

a=a-b H' (18.7-*23)

we may write Eq. (18.7.20)

2a' 0.2 H."2(18.7-*24)
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We may now solve for H iteratively as we did for H1 , except that
2 l

we use Eqs. (18.7.21) and (18.7.24). As a first approximation to H we

consider

2V V + b (18.7.25)

Find the smallest value in 2V, say, sVL2, and let

°0'2 = aL. (18.7.26)

In general, then,

sb.i = ia sH. (18.7.27)

b/ b(
1.1=s3) b 81 (18.7.28.)

s .i s a .i n

Sa' s .i = U.i (18.7.29.)

U
H i (18.7.30)
s .i /s .i s .i

,~la = a-b H (18.7.31)

18.7.2 Simultaneous Factor Varimax

Let

b = a H (18.7.32)

and b(2) be a matrix whose elements are the squares of those in b. Consider

the function

b(2)'(I 11' b(2) 0 max (18.7.33)
n" )bi= i
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We require that

H' H = I (18.7.34)

From Eqs. (18.7.32), (18.7.33), and (18.7.34) we write

i it n*= H' a' (IiDD~i-'+
At . b i " n)D a H -HI H X + z H'i H X.0i bn b *i A* 3=2. i

ijj(18.7-*35)

where the X are Lagrangian multipliers.

Let

b/ b
. b(3) -b A (18.7.36).i A bi

Differentiating Eq. (18.7.35) symbolically with respect to HI, equating to

0, and using Eq. (18.7.36), we have

at - = 0 (18.7.37)

Or, setting up the complete matrix,

a' -HX = 0 (18.7.38)

where now X is a matrix of Lagrangian multipliers, and where because of Eq.

(18.7.35),

x' = x (18.7.39)

and from Eq. (18.7.36)

b(3 )  b Db' b (18.7.40)

n
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From Eq. (18.7.38)

=' H - (18.7. ia)

Let

a p p A Q (18.7.42)

be the basic structure of _

From Eq. (18.7.42)

p 4 Q, H (18.7.43)

Because of Eqs. (18.7.34) and (18.7.39), the only X" which will satisfy Eq.

(18.7.43) is

0 = Q 6' Q (18.*44)

From EBqs. (18.7.43) and (18.7.44)

H = P Q' (18.7.45)

We let

C = at p (18.7.46)

From Eqs. (18.7.42) and (18.7.46)

Q A2 Q, C (18.7.47)

From Eqs. (18.7.42) and (18.7.46)
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From Eqs. (18.7.45) and (18.7.48)

H CQ d' (18.7.49)

The iteration procedure is as follows. Given the ith approximation to

then

= b(3) - b (18.7.50)

iC = a' i (18.7.51)

2
,2 ' = ic' ic (18•7.52)

i+1H = iC i A1" iQ' (18.7.53)

.+lb = a i+lH (18.7.54)

18.7.3 Successive Factor General Varimax

Let

b a H (18.7.55)
1.1

k 2 (18.7.56)

2m2 -1
where m1 and m2 are integers and m2  ml• (k) be the vector whose

elements are the kth power of those in b1 . Because of Eq. (18.7.56) all

elements of bk) are nonegative.

Consider

b(k)'(I 1 L' b(k) max (18.7.57)• n " ) .1. 1
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with the constraint

HI H 1 (18.7.58)

Let

O- k H X (18.7.59)

where X1 is a Lagrangian scalar.

From Eqs. (18.7.55) and (18.7.57)

HI a .IDk'1 1I11 ki a H 1  (18.7.60)

Frm Eqs. (18.7.59) and (18.7.60) we may write the maximizing equation

HI 21k [a n D b aH.1  H.1  i = 0 (18.7.61)

.1 .i .1

We let

1' b (k)
Sb (- .1 (18.7.62)

From Eqs.. (18.7.61) and (18.7.62)

a = H X (18.7.63)

.11

We may begin with some arbitrary b,., say, .b1  and set up the iterative

equations 11b(k)

= b(a1) b(1 (8-.4s0.1 s .( 86

a,/.l .1 . (18.7.65)
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Sal (18.7.66)

bi. saH (18.7.67)

b,.1 a s87l8

afte C~stabilizes, we calculate

a a-b HI (18.7.69)

This is then substituted for a in Eqs. (18.7.65) and (18.7.68) to get b 2.

The general equation for Eq. (18.7.,69) is,. of course,

-1- +H (18.7.70)

To calculate the elements in ,b. raised to the respective powers, we

proceed as follows. We let B be any element of 5bi. Now because of Eq.

(18.7.56)

k- 2in -- i 2 ) (18.7.71)

2 r42 -1

and

2 k-l 2(1n-n)+ (18.7.72)

2 m 2 -1

From Eq. (18.7.71) all ____ and Bklhave the same sign as B. From

Eq. (18.7.56) all __ are positive. Hence to calculate the several required

powers of B we have

=antilog [k log t-Bl] (18.7.73)
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Bk  antilog (k - 1) log 1Bi]ll (18.7.74)

= antilog [(2 k - 1) log 1I1] B (18.7.75)

These three powers of B may be readily calculated from tables or from standard

library programs for computer installations.

18.7.4 Simultaneous Factor General Varimax

Let

b = a H (18.7.76)

2
k 1 (18.7.77)

2 m2 -1

where mi and m2 are integers andm2  m. Consider, then, the generalization

of Kaiser's criterion

.1 1 n 11) b(k) =max = (18.7.78)

with the constraint

H' H = 1 (18.7.79)

From Eqs. (18.7.76), (18.7.77), and (18.7.78)

H= a 7 (18.7.80).i b. i "- ) l Hi

Consider

= 0-k tr (' R) (18.7.81)
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where X is a syFetric matrix of Lagrangian multipliers.

From Eqs. (18.7.80) and (18.7.81) we may write

2 k [k at D -'D (I - 1 1' - a- H.. X 0 (18.7.82)
n . .i . i

Let

2k-1) 1) )1' b~k
bi - .ikl (18.7 .83)

Frm Eqs,. (18.7.82) and (18.7.83)

a' i X i = 0 (18.7.84)

or for the matrix form

a, = EX (18.7.85)

By the methods of the previous section, we may let the basic structure of

~be

a = Pa Q' (18.7.86)

From Eq. (18.7.85)

at a ):, = H (18.7.87)

To satisfy Eqs. (18.7.87) and (18.7.79)

H= a' QEQ' (18.7.88)

We may begin with some arbitrary approximation to b in Eq. (18.7.76),
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say, 1b. From i b and Eq. (18.7.83) we calculate iP. Then from Eq. (18.7.86)

at 10 = P 
1 A 1Q' (18.7.89)

and from Eq. (18.7.88)

1I 1 1Q, (18.7.90)

In general, then,

-b(2k.l) - b(k.1) ' (18.7.91)
as .i (18.7.92)

s is .i s .i n

aa', - sP  S& so'  (18.7.92)

= a' - (18.7.93)

s+lb  = a H (18.7.94)

The several required powers of the sb i in Eq. (18.7.91) can be calculated

as in the previous section.



CHAPTER 19

DIRECT VARIMAX SOLUTIONS

We saw in Chapter 18 that we may begin with any arbitrary factor load-

ing matrix, and transform it to a simple structure varimax factor loading

matrix by means of a square orthonormal transformation. In this chapter,

we shall see how we may avoid the intermediate step of first calculating an

arbitrary factor loading matrix, such as in the principal axis, multiple

group, group centroid, and variations of these methods.

19.1 Characteristics of the Method

19.1.1 No Arbitrary Factor Matrices Required. In the procedures out-

lined in the following sections, we shall see how we may operate directly on

the correlation matrices, or the score matrices from which they are derived.

Strangely enough, this seems to be a novel approach for factor analysts.

The tradition has been to calculate first some arbitrary factor loading

matrix, such as the principal axis, centroid., or other type of arbitrary

factor loading matrix, whose major product moment gives a reasonable approxi-

mation to the correlation matrix. These arbitrary matrices are then trans-

formed by the procedures outlined in the previous chapter or by other analy-

tical, semianalytical, or graphical methods. Actually, the transition from

operations upon the arbitrary matrices to achieve simple structure matrices,

to that of a direct solution for the simple structure matrices from the cor-

relation or data matrices, is perfectly natural, both from a logical and a

mathematical point of view.

19.1.2 Analytical Methods. As a matter of fact, however, the methods

of direct solution for simple structure factor matrices are applicable pri-

marily. to those procedures and rationales which use analytical, rather than
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graphical or judomental, methods. It should be pointed out that the method

for achieving simple structure by means of a binary hypothesis matrix, such

as discussed in Chapter 17 for the special case of the multiple group method,

might be regarded as a special case of a direct solution from the correlation

matrix. Here, however, the rationale and procedure is essentially different

from that of the methods to be discussed in this chapter.

All of the methods discussed in this chapter are based on the analytical

procedures of the varimax method, and constitute applications of the ration-

ale of this method to the correlation and data matrices. The direct solu-

tions for simple structure matrices need not be limited to the varimax type

of solution. However, as in the previous chapter, they will be so restricted

in this chapter because of the practical difficulties encountered with other

alternatives to the varimax solutions which have been developed and experi-

mented with so far.

19.1.3 Rank Reduction Solutions. All of the solutions considered in

this chapter are of a rank reduction type. This means that the rank of the

residual matrix, following the solution of any factor vector, is one less

than that of the previous residual matrix, or, in the case of a factor matrix,

its rank is equal to that of the correlation matrix less the number of factors

in the factor matrix.

19.1.4 Iterative Solutions. All of the solutions outlined below are

of an iterative type. In this respect, they differ from the direct solution

considered for the multiple group method in Chapter 17, in which a binary

hypothesis was used. Here, we recall, no successive approximations were re-

quired, except for the orthonormal transformation.



102

All of the iterative solutions required for the various types of direct

solutions outlined below can be shown to be special, though rather compli-

cated, eigenvector or basic structure type solutions in which we have a sym-

metric matrix, some of whose elements are functions of its own basic ortho-

normal and basic diagonal elements. Therefore, the iterative procedure may

be somewhat more involved than in the case of a straightforward basic struc-

ture solution, in which the elements of the symmetric matrix whose basic

structure is desired are constant values. As a matter of fact, this type

of basic structure solution is characteristic not only of the methods .Of this

chapter, but also of those of the previous chapter, in which the solutions

are not applied directly to the correlation or data matrices but to some

arbitrary factor matrix.

19.1.5 Utilization of Information. One of the distinguishing charac-

teristics of the methods outlined in this chapter is that, in a sense, more

of the information in the correlation or data matrix is utilized than in the

methods of Chapter 18. Implicit in the methods of both Chapters 17 and 18

is the assumption that the factor loading matrix accounts for all of the

significant or systematic nonrandom information inherent in the correlation

or data matrices. This assumption may not be valid in many cases.

In the methods outlined below, all of the information in the data or

correlation matrices is utilized in the determination of the simple struc-

ture varimax factor matrices or vectors. This may be regarded as an advant-

age, from the point of view of information utilization; or it may be regarded

as a disadvantage, if one takes the position that the information left over

after the major product moment of the factor loading matrix is subtracted
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from the correlation matrix essentially represents error or random variation.

In this latter case, one may argue that the application of direct varimax

methods to the correlation or the data matrices may be spuriously affected

by such random variation. A great deal more theoretical and experimental

work needs to be done before the relative validity of these alternative

points of view can be established. In general, the criterion of invariance

from one sample of entities and attributes to another would be a relevant

consideration here. Presumably, if the direct methods turn out to yield

more consistent results from one sample of entities to another, and from

one sample of attributes to another, their superiority would be definitely

indicated.

19.1.6 Results Different from Transformation Solutions. It must be-

come obvious that one cannot expect exactly the same results from the dir-

ect methods outlined below as from the transformation solutions indicated

in Chapters 17 and 18. Even for the direct methods of Chapter 18, in which

we use the same varimax criteria and precisely the same models, one cannot

expect to get exactly the same results as when the criteria are applied to

the correlation or data matrices. The reason for this is, of course, that

we utilize not only the information provided by some arbitrary factor load-

ing matrix, but also information inherent in the data or correlation matrix

which has not been reflected in the solution for the arbitrary factor load-

ing matrix.

Only extensive research can tell which of the methods is better from

the point of view of factorial invariance. There is, of course, the question

of which factor loadings make more sense from the point of view of the
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particular discipline concerned. But as we have suggested earlier, the de-

termination of whether or not the results make sense for a particular dis-

cipline is subjective. Until the concept is more objectively defined than

it has been in the past, we cannot use the criterion of how much sense the

results make as a basis for comparison of any of the methods of factor analy-

sis.

19.2 Kinds of Methods

For convenience, we may group the various methods into four classes.

These are (1) the successive factor varimax solution from the correlation

matrix, (2) the simultaneous factor varimax solution from the correlation

matrix, (3) the successive factor varimax solution from the data matrix, and

(4) the simultaneous factor varimax solution from the data matrix. Each of

these classes of solutions may, in the conventional manner, maximize the

variance of the squared elements, or, more generally, the variance of some

other even power, just as in Chapter 18. le shall consider first the con-

ventional type solutions, and then the general type.

19.2.1 Solutions from the Correlation Matrix. As indicated in the

previous section, the direct solutions may proceed either by operations on

the correlation matrix or by operations directly on the data matrix. The

methods based on operations on the correlation matrix may again be of two

kinds, analogous to the two types of varimax rotations for arbitrary factor

matrices. One of these is the successive factor vector method which obtains

a single factor vector at a time. The other is the simultaneous factor matrix

method, which iterates successively to the entire factor loading matrix for

the particular number of factors hypothesized to be significant for a set
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of variables.

19.2.2 Solutions from the Data Matrix. One may bypass the calculation

of the correlation matrix and operate directly upon the data matrix. Solu-

tions of this class obviously cannot achieve a net saving in computations

over the number required for the correlation matrix, since, as one may

guess, the computations for the direct varimax from the data matrix involve

more computations than solutions based on the correlation matrix itself.

The question as to which of the methods is most economical from a computer

or cost point of view depends on a number of factors. In general, if the

number of cases is not vastly greater than the number of variables, one may

save some time operating directly upon the data matrix.

In any case, the methods outlined here assume that the data matrix has

been scaled so that the variables have means of 0 and variances of unity.

It is possible, of course, to work out computational procedures so that the

data matrix need not first be processed to yield a standardized metric. Such

a computational procedure would incorporate the vector of means and the di-

agonal of standard deviations or variances. These methods, like those in

Section 19.2.1, include the successive factor varimax model and the simul-

taneous factor matrix model, but here they are applied directly to the

scaled data matrix.

19.2.3 The Successive Factor General Varimax Method. The convention-

al or Kaiser varimax method, as we know, maximizes the variance of the squared

factor loadings. This rationale, we recall, may be generalized so that the

variance of any even power function of the factor loading variable may be

maximized. As indicated in Chapter 18, the power should be greater than
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unity. Otherwise, we may get into difficulty with reciprocals of very

small values. The successive factor general varimax procedures may again

be divided into two models. One of these operates on the correlation matrix,

and the other operates directly on the data matrix.

19.2.4 Simultaneous Factor General Varimax. Just as we have the simul-

taneous general factor varimax method operating on the arbitrary factor load-

ing matrix, so also we can apply this model directly to either the correla-

tion matrix or the data matrix. In this chapter we shall consider its ap-

plication to both the correlation matrix and the data matrix. The data

matrix is assumed to be scaled so as to give means of 0 and variances of

unity.

19.3 Successive Varimax Factor from Correlation Matrix

19.3.1 Characteristics of the Method. We are already familiar with

some of the characteristics of the successive factor varimax method applied

directly to the correlation matrix. It may be of interest to compare this

method with others, such as the principal axis or centroid, with respect to

the amount of variance accounted for by the successive factors. In the

latter methods, we recall that the amount of variance accounted for tends

to decrease, in general, with the successive factors calculated.

We cannot, however, assert that each varimax factor calculated from

the correlation matrix does account for more of the variance than the sub-

sequent one. We cannot even guarantee that the criterion of maximum vari-

ance of the squared factor loadings will be greater for a given factor

vector than for one calculated subsequently. The order depends very largely

on the characteristics of the matrix, and also on what is used as a first

tZ
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approximation for any particular factor loading vector.

A further reason for the uncertainty of the order of the factors, with

respect to the amount of variance accounted for and the variance of their

squared factor loadings, is the fact that we are dealing with an eigenvector

or basic structure problem of a very complicated nature. As we have seen,

the model involves symmetric matrices whose elements are functions of its

eigenvectors and eigenvalues. We do not yet have available an adequate mathe-

matrical substructure for a satisfactory understanding of what determines the

order in which the factors will appear.

19.3.2 Computational Equations

19.3.2a Definition of Notation

R is the ith residual correlation matrix where 1R is the correla-2_. - 1-
tion matrix itself.

b is the s approximation to the ith varimax factor vector.

s7  is the amount of variance accounted for by the s approximation

to the ith varimax factor vector.

sai is the varimax criterion for the s approximation to the ith

varimax factor vector.

b ( 3 ) is a factor vector whose elements are the cubes of those
5 i

in b .

19.3.2b The Equations

R i~R -b.(i.1) b'.i.)(..)
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Sb' b19:.2)
s i s .i s.i

s.i s i si n
ss. " (19.3.3),

w -- (19.3.5)-

= (19.3.6)

r = 1R - I (19.3.7)

p = r(2) (19.3.8)

U o p - 1)(2) (19.3.9)

UL 0 is largest element in U (19.3.10)

lb.1 = R.L (19.3.11)

19.3.3 Computational Instructions. We begin with a correlation matrix.

The meaning of Eq. (19.3.1).is as follows. If I = 1, we have simply the cor-

relation matrix. The right hand side of this equation will then be ignored

because the i - 1 would be 0 and have no meaning that is, it would not be

defined. It is only for i greater than 1 that Eq. (19.3.1) has meaning.

We assume now that we have a first approximation to a factor loading
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vector which will be described in detail in Eqs. (19.3.7) through (19.3.11).

Eqs. (19.3.2) through (19.3.6) describe the successive cycles for the s ap-

proximation to the ith factor loading vector.

Having given any approximation to the ith factor loading vector, its

minor product moment is calculated as indicated in Eq. (19.3.2).

Next we calculate a vector as indicated in Eq. (19.3.3). This is the

P vector with which we are already familiar. It is obtained by cubing the

elements of the b vector, and subtracting from it the b vector multiplied

by the scalar in Eq. (19.5.2) divided by n.

The next step is indicated by Eq. (19.3.4), which again is of course

a general equation for the s approximation. It is the product of the ith

residual correlation matrix postmultiplied by the E vector calculated in

Eq. (19.3.3).

Next we calculate the scalar indicated by Eq. (19.3.5). This is the

square root of the minor product moment of the vectors of Eqs. (19.3.3)

and (19.3.4).

The s+l approximation to the varimax factor loading vector for the ith

factor is calculated in Eq. (19.3.6). This is the vector of Eq. (19.3.4)

divided by the scalar of Eq. (19.3.5).

As yet there appears to be no completely satisfactory method for choos-

ing a first approximation to any particular varimax factor loading vector,

including the first one. However, the following method is recommended and

should give good results in most cases.

Consider the correlation matrix with O's in the diagonal, as indicated

in Eq. (19.3.7).
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First we square each element of the matrix r of Eq. (19.5.7), as in-

dicated in Eq. (19.3.8).

We then calculate a U vector as indicated in Eq. (19.3.9). This is ob-

tained by calculating a vector of the sums of the rows of the matrix in Eq.

(19.3.8). From this is subtracted a vector of the squares of the sums of

rows of the matrix in Eq. (19.3.7) divided by n - 1, the number of variables.

The U vector is therefore n - 1 times the vector of the variances of the

columns of the correlation matrix with the diagonal elements excluded.

In Eq. (19.3.10), we find the largest element in the U vector calcu-

lated in Eq. (19.3.9), and call this the L position.

We then take as the first approximation to the first varimax vector

the Lth column of the correlation matrix, as indicated in Eq. (19.3.11).

Using Eqs. (19.3.2) through (19.3.6), we then calculate the first vari-

max factor loading vector by successive iterations until the a scalar of

Eq. (19.3.5) stabilizes to some prespecified degree of accuracy.

Then we calculate the first residual matrix by substituting 2 for the

i subscript in Eq. (19.3.1). This residual matrix is simply the original

correlation matrix, less the major product moment of the final approxima-

tion to the b1 vector.

We now require a first approximation to the second varimax factor

vector. We apply the procedures of Eqs. (19.3.7) through (19.3.11) to the

residual matrix.

We continue with Eqs. (19.3.1) through (19.3.6), and generalizations

of Eqs. (19.3.7) through (19.3.11), until enough factors have been extracted.
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19.3.4 Numerical Example. In this and subsequent numerical examples

in this chapter, the presentation of the results will not conform to that

of the presentation of the methods themselves. Rather it will conform to

a computer program sequence which is more efficient for performing the com-

putations included in all of the methods of this chapter. Each numerical

exsmple section will include both the conventional case in which the vari-

ance of squared elements of the varimax factor vectors are maximized, and

a special example of the general case for the power.

The same correlation matrix used in previous chapters will be used for

all of those methods beginning with the correlation matrix. This is repeated

for convenient reference in Table 19.3.1.

The same data matrix will be used for all methods operating directly

on the data matrix. This matrix yields the correlation matrix of Table

19.3.1, so that the results obtained from the data matrix may be compared

with those obtained from the correlation matrix.

Table 19.3.2 gives the data matrix.

Table 19.3.3 gives the varimax factor matrix for three factors obtained

by the successive factor matrix method directly from the correlation matrix,

for the conventional case in which the variances of the elements of the

squared factor loading vectors are maximized.

Table 19.3.4 gives the varimax factor loading matrix for the successive

10factor general matrix, where the T power, rather than the square of the

elements, is used.
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Table 19.3.1 - Correlation Matrix

1.000 0.829 0.768 0.108 0.033 0.108 0.298 0.309 0.351
0.829 1.000 0.775 0.115 0.061 0.125 0.323 0.347 0.369
0.768 0.775 1.000 0.272 0.205 0.238 0.296 0.271 0.385
0.108 0.115 0.272 1.ooo 0.636 0.626 o.249 0.183 0.369
0.033 0.061 0.205 0.636 1.000 0.709 0.138 0.091 0.254
0.108 0.125 0.238 0.626 0.709 1.000 0.190 0.103 0.291
0.298 0.323 0.296 0.249 0.138 0.190 1.O00 0.654 0.527
0.309 0.347 o.271 o.183 O.O91 O.1O3 0.654 1.000 0.541
0.351 0.369 0.385 0.369 0.254 o.291 0.527 0.5541 1.OOO

Table 19.3.2 - Normalized Deviation Data Matrix

o.128 0.181 o.421 0.506 0.857 0.746 0.280 0.178 0.246
0.764 0.740 0.563 -0.387 -0.293 -0.202 o.261 0.281 0.043
-O.030 -O.O46 O.014 o.147 -0.109 -0.135 O.640 o.682 o.661
-0.280 -0.351 -0.326 -0.023 -O.109 -o.186 0.083 0.091 -0.654
-0.336 -0.306 -0.429 -0.542 -0.006 -0.153 -0.428 0.056 -0.124
-0.276 -0.324 -o.271 -0.370 -0.225 0.035 o.129 -0.446 -o.124
0.057 -0.070 -0.016 0.006 0.152 -0.441 -0.166 -0.354 -0.033
-0.010 -0.140 0.326 -0.004 -0.258 -0.091 -0.410 -0.200 -0.101
-0.303 0.227 -0.014 0.029 -0.102 -0.125 -0.086 -o.lo6 -0.074
0.086 o.057 -0.03 o.161 0.073 0.134 -0.082 -0.O67 -0.009
0.164 0.106 -0.124 0.234 -0.002 0.227 -0.072 0.025 0.156
0.036 -0.074 -0.142 o.242 0.023 0.192 -0.148 -0.119 0.011

Table 19.3.3 - Successive Factor Varimax Matrix from Correlation Matrix
for k = 2

0.937 0.003 0.092
0.9)3 0.023 0.127
0.887 0.175 0.063
0.098 0.782 0130
0.042 0.921 0.026
O.lOO 0.894 0.044
0.234 0.129 0.837
0.243 0.058 0.903
o.3oo o.247 0.527
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Table 19.3.4.- Successive Factor General Varimax Matrix from Correlation

Matrix for k 10

0-947 -0.040 0.018
o. 9.46 -0.013 0.0,57
0.880 0.140 -0.012
0.143 o.,663 0.099
0.078 0.991 0.000
0.143 0.769 0.008
0.302 0.123 0.596
0.311 0.067 0.948
o.3.64 0.235 0.430
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19.4 Simultaneous Varimax Matrix from the Correlation Matrix

19.4.1 Characteristics of the Method. This method is like the preced-

ing one in that we operate directly on the correlation matrix rather than on

the arbitrary factor matrix. Here, however, we iterate simultaneously to

all of the factor loading vectors which we wish to solve for. It differs

also from the previous method in that we have a-less lbjective way for getting

a first approximation to the factor loading vectors than we did in that method.

It is also essentially different computationally from the previous method in

that each iteration involves the solution for the basic structure of a sym-

metric matrix. The Q orthonormal and a2 basic diagonal of this matrix are

required in the successive approximations to the factor loading vectors. In

this respect the method is analogous to the simultaneous method of Chapter

18.

19.4.2 Computational Equations

19.4.2a Definition of Notation

R is the correlation matrix.

ab is the s approximation to the varimax factor matrix.

sb(3 ) is a matrix whose elements are the cubes of those in sb.

D b/ b is a diagonal matrix whose elements are the diagonals of

he minor product moment of b.

Q is a basic orthonormal.

A4 is a basic diagonal.

@5

i4
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19.4.2b The Equations
Db' b

= b(3)  b s s (19.4.1)

sM -- R s (19.4.2)

SG = s' sM (19.4.3)

sQ s 2 sQ1 = s (19.4.4)

sl b -- UP ) s') 1 (19.4 5

19.4.3 Computational Instructions. In this method we start with some

arbitrary approximation to the varimax factor loading matrix. This may be

simply the first m columns of the correlation matrix, where m is the number

of factors. In any case, one must make an assumption as to the number of sig-

nificant factors in the data matrix. It is better to overestimate than to

underestimate the number, as some of the factors can later be rejected from

the final stabilized varimax factor loading matrix if they do not seem inter-

pretable or of sufficient importance.

If one has an hypothesis as to which of the variables represents which

factor, he may select a variable to represent each factor. Then the columns

of the correlation matrix corresponding to these variables will constitute

the vectors of the first approximation to the varimax factor matrix.

We begin then with Eq. (19.4.1) in which the subscript s is taken as 1.

This equation is similar to those we are already familiar with. The right

hand side has for the first term a matrix whose elements are the cubes of
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the elements of the corresponding approximation to the factor loading matrix.

We subtract from this the factor loading matrix itself, after scaling it by

a diagonal matrix. This diagonal matrix is made up of the diagonals of the

minor product moment of the current approximation to the factor loading

matrix, and then divided by n, the number of variables.

Next we calculate the product indicated in Ej. (19.4.2). This is the

correlation matrix postmultiplied by the matrix calculated in Eq. (19.4.1).

We then calculate the minor product of the matrices calculated in Eqs.

(19.4.1) and (19.4.2). This is the matrix G indicated in Eq. (19.4.3).

Next we calculate the basic structure factors of the matrix G. This is

indicated by Eq. (19.4.4).

Finally, for each approximation, we calculate the product of the four

factors as indicated in Eq. (19.4.5). This is the product of the matrix of

Eq. (19.4.2) postmultiplied first by the right orthonormal of the matrix in

Eq. (19.4.4), then by the inverse of the square root of the basic diagonal

of the matrix in Eq. (19.4.4), and finally by the left orthonormal of the

matrix in Eq. (19.4.4), which is, of course, the transpose of the right

orthonormal. This is true because G is a product moment matrix. We now

have the s+l approximation to the matrix of varimax factor loadings. These

iterations continue until the approximation is sufficiently close.

A good criterion of convergence is the trace of the G matrix given by

Eq. (19.4.3). Another criterion may be the trace of the minor product moment

of the current approximation to the factor loading matrix. This would be the

diagonal matrix in the right term of the right side of Eq. (19.4.1). This

trace is simply the total amount of variance accounted for by any particular
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s approximation to the factor loading matrix. As indicated earlier in this

chapter, any approximation is a rank reduction solution, and therefore the

larger this trace the greater the amount of variance accounted for.

19.4.4 Numerical Example. This example begins with the same correla-

tion matrix given in Table 19.3.1.

Table 19.4.1 gives the first three varimax factor vectors for the simul-

taneous factor method applied to the correlation matrix for the convention-

al case of the squared elements.

Table 19.4.2 gives the first three varimax factor vectors for the simul-

taneous factor general method applied to the correlation matrix for the case

of the i2. power of the varimax factor elements. The results are not markedly

different from those in Table 19.4.1.



Table 19,4.1 - Simultaneous Factor Variimax Matrix from Correlation
Matrix for k =2

,0.929 0.007 .0.153
.0.922 0.025 0.187
0.882 0.179 0.125
.o85 0.781 0.153
.0.033 0.917 0.048
.o09 o0.896 0,.072
.0.177 0.112 0.88 4
o.186 0.040 o.891
0.266 0.238 0.551

Table 19.4.2 - Simultaneous Factor General Varimax Matrix from Correla-

tion Matrix for k 10

0.944 0.018 0.121
0.935 0.024 o.148
0.857 o.194 .0.112
0.080 0.989 o.116
0.037 0.670o 0.049
0.100 o.64i5 0.092
0.189 0.123 0.974
0.242 0.088 .0.633
0.306 0.292 0.442
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19.5 Successive Factor Vector from Data Matrix

19.5.1 Characteristics of the Method. This method differs essential-

ly from the preceding methods in that the calculation of the correlation

matrix is not required. The computations proceed directly upon the data

matrix. It is assumed that they have been previously scaled. This assump-

tion is not imperative, however, since the computations could be modified

to operate on a raw data matrix. The method differs also from the succes-

sive factor matrix method of Section 19.3 in that it is difficult to select

a first approximation to a factor loading vector by objective means. Per-

haps the simplest way to get the first approximation to the first factor

loading vector is to assume that the first variable is not an extremely

poor representation of the first varimax factor.

19.5.2 Computational Equations

19.5.2a Definition of Notation

iZ is the ith residual data matrix where 1
Z is the scaled data

matrix with 0 means and unit variances.

s7i b b(3) and sai are the same as in Section 19.3.2a.

sY.i is the s approximation to the ith varimax factor score vector.

19.5.2b The Equations

iz  i-1z " Y(1-1) b.(1-1) (951

b z' z (19.5.2)!.i i i .Li
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Y 5b:' b. (19.5.3)

= b(3) 5b i (19.5.4)s.i S .i S Ab~ n-

s - z s.i (19.5.5)

SI / sUl i (19.5.6)

S+ SU.i iz'sy.i (19.5.8)

Ul Zb.l (19.5.9)

L1 .1
.Uil = smallest U 1I (19. 5.10)

Ui =U .1 + b (19.5.11)

ULi smallest Ui (19.5.12)
Li

19.5.3 Computational Instructions. We assume that a normalized data

matrix is available. Ordinarily, one would not normalize a complete data

matrix with a large number of variables if the computations are done with a

desk computer. It is assumed, however, that for this particular model a

high speed computer is available. It is also assumed that a preliminary

computer program is available for transforming the raw data matrix to one

whose means are 0 and whose variances are unity.
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We begin by considering Eq. (19.5.1). If i = 1, this is the standard-

ized data matrix and we bypass this equation to get a first approximation to

the first factor loading vector.

This is indicated in Eq. (19.5.2). On the basis of some rationale or

hypothesis, we may select some particular variable as a satisfactory approxi-

mation to one of the factors. If no satisfactory rationale is available, we

may arbitrarily begin with the first variable. It is seen, therefore, that

the vector given by Eq. (19.5.2) is the correlation of the selected variable

L with all of the variables, including itself.

Eqs. (19.5.3) through (19.5.8) give the successive cycles required for

a particular approximation to the factor loading vector b.i. We shall dis-

cuss this set of computations before indicating generally how we get the

first approximation for any particular factor vector following the first.

Eq. (19.5.3) shows the minor product moment of the current approxima-

tion to the ith factor vector. This scalar, Y_$ indicates the amount of

variance accounted for by the s approximation to the ith factor vector.

The ft vector is given in Eq. (19.5.4). This is obtained by construct-

ing first a vector of the cubes of the elements in the current approximation

to the ith factor vectorp and subtracting from it the current approximation

multiplied by the scalar of Eq. (19.5.3) divided by n.

Next we compute the product indicated in Eq. (19.5.5), which is the

ith residual data matrix postmultiplied by the vector of Eq. (19.5.4).

Then we calculate the scalar indicated by Eq. (19.5.6) which is the

square root of the minor product moment of the vector calculated in Eq.

(19.5.5).
4
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We next calculate the current approximation to the factor score vector

Y A as indicated in Eq. (19.5.7). This is the vector calculated in Eq.

(19.5.5) divided by the scalar calculated in Eq. (19.5.6).

Finally, we calculate the s+l approximation to the b vector by means

of Eq. (19.5.8). This is the transpose of the ith residual data matrix post-

multiplied by the factor score vector of Eq. (19.5.7).

We then begin again with Eq. (19.5.3) and repeat the cycle. We contin-

ue this set of iterations until either the 7 scalar of Eq. (19.5.3) or the

a scalar of Eq. (19.5.6) is stabilized to some specified degree.

Then we return to Eq. (19.5.1) to calculate a new residual matrix, which

is obtained by subtracting the major product of the stabilized Y and b vectors

of Eqs. (19.5.7) and (19.5.8), respectively, from the current residual matrix.

To get the first approximation to the second varimax factor vector, we

consider Eq. (19.5.9). Here we simply equate the U1 vector to the first

stabilized factor loading vector b.10

We then find the algebraically smallest element in the vector of Eq.

(19.5.9), as indicated in Eq. (19.5.10).

Next we get the first approximation to the second factor vector by

letting i = 2 in Eq. (19.5.2).

To get the first approximation to the ith factor loading vector we con-

sider Eq. (19.5.11). To get U i, we add U i1 to the stabilized b 411 vari-

max vector.

Eq. (19.5.12) indicates the algebraically smallest element in a vector

of Eq. (19.5.11). This we designate as in the Li position.

4
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Then we return to Eq. (19.5.2) to get the first approximation to the

Ith varimax factor loading vector. This is the transpose of the ith resi-

dual data matrix postmultiplied by the I column of this residual matrix.

19.5.4 Numerical Example. This numerical example begins with the

data matrix given in Table 19.3.2.

Table 19.5.1 shows the first three varimax factor vectors obtained by

the successive factor method directly from the data matrix for the case of

k = 2.

Table 19.5.2 gives the varimax factor matrix obtained by the succes-

sive factor general method from the data matrix for the case Qf k =1

- 5
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* Table 19.5.1 -Successive Factor Varimax Matrix from Data Matrix for

o.934 0.091 -0.010
0.934 0.127 0.016
o.891 0.076 o0.169
0.09,3 o.165 0.726
0.044 0.077 0.93-2
0.096 0.093 0.839
0.236 o.881 o.081
0.240 0.871 0.012
0.300 0.541 0.212

Table 19.5.2 - Successive Factor General Varimax Matrix from Data matrix

for k = "-3
0.943 -0.226 -0.052
0.947 0.320 -0.006
0.884 -0.156 0.136
o.136 -0.050 0.6o6
0.079 -0.019 0.991
0.136 -0.01,6 0.70
0.304 0.072 0.12.4
0.307 0.107 0.069
0.363 0.048 0.225
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19.6 Simultaneous Factor Matrix from Data Matrix

19.6.1 Characteristics of the Method. The characteristics of this

method have already been fairly well covered in the previous sections. Ex-

cept for decimal accuracy, it should give essentially the same results as

the method discussed in Section 19.4. The calculation of the correlation

matrix as such is bypassed, and the multiplications implied by the correla-

tion matrix, that is, the minor product moment of the data matrix, is ac-

complished at each iteration by two successive multiplications of a matrix

by a vector.

The method avoids the accumulation of decimal error resulting from the

calculation of residual matrices, such as in Sections 19.3 and 19.5. Hoi-

ever, as in Section 19.4, for each approximation one must calculate the

basic orthonormal and basic diagonal of a Gramian matrix whose order is

equal to the number of factors. Again, this is not a formidable task for

high speed computers, since a number of computer programs are already avail-

able for computing all of the latent roots and vectors of the Gramian matrix,

including the programs in the appendix for Chapter 9.

19.6.2 Computational Equations

19. 6 .2a Definition of Notations

Z is the data matrix with means of 0 and variances of unity.

3b, s sQ, and s6 are the same as in Section 19.5.2b.

Y is the s approximation to the varimax factor score matrix.

* 5
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19.6.2b The Equations

lb = z' Z(m)  (19.6.1)

D b
= b n (19.6.2)

SU = Z so (19.6.3)

sG  = SU' su  (19.6.4)

sQ sA2 sQ' a G  (19.6.5)
1 -

sG '2 = sQ s& sQ (19.6.6)

1

= sU sG"  (19.6.7)

by = SUsZ' y

s+l b  = V sY (19.6.8)

19.6.3 Computational Instructions. In this model we begin with a

standardized data matrix.

We must choose some sort of approximation to the first varimax factor

loading matrix. If we have some hypothesis as to a single variable which

best measures each of the factors, we can use these variables to begin the

computations. In any case, whether we have a rational procedure, or whether

we select the first m variables where m is the number of factors we expect

to solve for, we begin with Eq. (19.6.1). The right side of this equation

is the transpose of the data matrix postmultiplied by a submatrix made up

of m vectors out of Z. These m vectors may be rationally or arbitrarily
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selected. Actually, then, this first approximation to the b matrix is simply

a matrix of the correlations of the m variables with all the variables, in-

cluding the correlations among themselves.

The general equations for the computations are then indicated by Eqs.

(19.6.2) through (19.6.7).

Eq. (19.6.2) gives the computation for the first approximation to the

matrix, just as in Section 19.4.2. The first term on the right of this

equation is a matrix whose elements are the cubes of the correspinding ele-

ments of the current approximation to the b or varimax factor loading matrix.

From this is subtracted the current approximation to the b matrix, scaled

by a diagonal matrix on the right. This diagonal matrix is made up of the

diagonal elements of the minor product moment of the current approximation

to the b matrix, divided by p, the number of variables.

The next step is given by Eq. (19.6.3). As indicated on the right hand

side ^f this equation, the data matrix Z is postmultiplied by the 0 matrix

given in Eq. (19.6.2).

The next step is given in Eq. (19.6.4). The matrix G is the minor pro-

duct moment of the matrix calculated in Eq. (19.6.3).

We then calculate the basic structure factors of the matrix G given in

Eq. (19.6.4), as indicated by the left hand side of Eq. (19.6.5). The com-

puter programs given for Chapter 9 for finding basic structure factors, or

eigenvalues and eigenvectors, of symmetric matrices are applicable here.
1

Next we calculate the G w matrix of Eq. (19.6.6). This is the triple

product involving the factors obtained from Eq. (19.6.5).
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We then calculate the current approximation to the varimax factor

score matrix, as indicated in Eq. (19.6.7). This is the matrix of Eq.

(19.6.3) postmultiplied by the matrix of Eq. (19.6.6).

Finally, we calculate the next approximation to the b or varimax factor

loading matrix, as indicated in Eq. (19.6.8). This is simply the transpose

of the data matrix Z postmultiplied by the factor score matrix given in Eq.

(19.6.7).

These computations continue until either the trace of the minor product

moment of the current factor loading approximation matrix, or the trace of

the G matrix in Eq. (19.6.4), reaches some specified degree of stabiliza-

tion.

19.6.4 Numerical Example. This numerical example begins with the data

matrix given in Table 19.3.2.

Table 19.6.1 gives the first three varimax factor vectors obtained by

the simultaneous factor matrix method directly from the data matrix for the

case of k = 2.

Table 19.6.2 shows the varimax factor matrix obtained by the simul-

taneous factor general matrix method directly from the data matrix for the

case of k 10
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Table 19.6.1 -Simultaneous Factor Varimax Matrix from Data Matrix
for k = 2

0.932 0.00 o.161
0.932 0.026 0.192
0.893 0.180 0.121
0.082 0.755 0.145
0.40 0.961 0.031
0.089 0.874 0.064
0.181 0.091 0.901
0.185 0.021 0.899
0.269 0.227 0.562

Table 19.6.2 - simultaneous Factor General Varimax Matrix from Data

Matrix for k 1

0.945 0.018 0.136
0.948 0.034 0.147
0.874 0.224 0.o66
0.083 1.036 0.087
o.o46 o.694 0.012
0.102 0.630 0.093
0.194 0.118 0.972
0.241 0.081 o.641
0.312 0.302 o.446
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19.7 Successive Factor General Varimax

As we recall, the general varimax method is similar to the Kaiser vari-

max method, except that it is based on some even fractional power, greater

than unity, of the elements whose variance is maximized, rather than on the

squares of these elements.

19.7.1 Computational Equations

19.7.1a Definition of Notation

ml is an integer not less than 1.

m2 is an integer not greater than mi.

b is the s approximation to the ith varimax factor vector.

b(2 ) b(k) $ b(k) are vectors whose elements are, re-

spectively, the 2k-i, k-l, and k powers of those in sb.i.

19.7.lb The Equations

k = (19.7.1)2m 2 - 1

11 b(k)
= b(2k-l) - b(k-1) s 1.i.72

s. i i (19.7.2)s . s .i n

the19.7.2 Computational Instructions. The procedures here are precisely

the same as in Sections 19.3 and 19.5, respectively, except that the P vectors

are calculated in a different manner, since the function whose variance we

want to maximize is more general than that of the square of the factor load-

ing.
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We begin with Eq. (19.7.1). Here we have, instead of the second power,

the kth power of the elements of the factor loading vectors whose variance

we wish to maximize. This is expressed as the ratio of twice the sum of a

positive integer, divided by twice some other positive integer less 1. The

positive integer in the denominator of this equation cannot be greater than

that in the numerator.

To define the s approximation to the f vector corresponding tm the ith

varimax factor loading vector, we use Eq. (19.7.2). This is the same as Eq.

(18.5.1) of Chapter 18. As indicated in that chapter, either we will re-

quire tables of logs and exponentials to calculate the powers of the elements

of b indicated on the right hand side of Eq. (19.7.2), or library functions

for the computer program must be available.

19.8 Simultaneous General Varimax

The simultaneous general varimax procedure is similar to procedures de-

scribed in Sections 19.4 and 19.6, except for the power of the elements in

the simple structure matrices whose variances are to be maximized.

19.8.1 Computational Equations

19.8.1a Definition of Notation

m and m2 are the same as in Section 19.7.2a.

b is the s approximation to the varimax factor matrix.S

_b(2k-) 
b ( k ) , b( k -1 ) are matrices whose elements are, respec-

tively, the 2k-l, k and k-l powers of the corresponding ele-

ments in b.5
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D1 1 b (k) is a diagonal matrix whose elements are those of 1l b(k).
S s

19.8.1b The Equations

2 m1

k 2im - (19.8.1)
2
b - bO -) DI1 b(k)
= (19.8.2)S S "S n

19.8.2 Computational Instructions. The computational inatructions are

the same as for the method using the correlation matrix, given in Section

19.4, and the method using the data matrix, given in Section 19.6, except

for the calculation of the _ matrices.

We shall first consider the general case for both the correlation and

the data matrices. Again, as in Section 19.7, we begin with Eq. (19.8.1)

which gives the value of k as the power of the elements of the simple struc-

ture factor loading vector whose variance we wish to maximize. The restric-

tions on m1 and m2 on the right hand side of this equation are the same as

the previous ones.

The general equation for the P matrix is now given by Eq. (19.8.2),

where the exponents in parentheses for the b matrices indicate that the cor-

responding elements of the current approximation to the b matrix have been

raised to the indicated power. The diagonal matrix on the right of the right

hand term of the right side of Eq. (19.8.2) is obtained as follows. We sum

the columns of the matrix whose elements are the kth power of the elements

in the b matrix, and use the elements of this vector in the diagonal. This

diagonal is then divided by a, and the b matrix with elements raised to the
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k - 1 power is scaled accordingly.

19.9 Mathematical Proofs

19.9.1 Successive Factor Matrix from Correlation Matrix.

From Section 18.3 we have, as the iterative solution for the varimax

factor vector b.i.,

11 b(2)
= b(3) b -S1)(19.9.1).s.i s .i s.i n

U a i (19.9.2)

s5a - sU°.i su. (19.9.3)

H s (19.9.4)s.i
sspi

S+b. = a sH., (19.9.5)

where

ia = 1 a- b.(i1) H'(i ) (19.9.6)

From Eq. (19.9.2)

ia ia/ s = ia sUl (19.9.7)

From Eqs. (19.9.5) and (19.9.6)

a a/ = (a_,)a (i. t)a- b.(il) b/ (19.9.8)

From Eqs. (19.9.4), (19.9.5), and (19.9.7)

ia la' = (19.9.9)
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From Eq. (19.9.3)

sai =/77i at o (19.9.1o)

We now let

l 1 = a a' (19.9.11)

where ia is the factor loading matrix.

From Eqs. (19.9.8) and (19.9.11)

'R -b. (19.9.12)

or, in general,

= i- b' (19.9.13)
i+ i .i .

From Eqs..(19.9.8) and (19.9.13)

i+1 a i+,a' = +1E (19.9.14)

From Eqs. (19.9.9), (19.9.10), and (19.9.14)

i R +-i . (19.9.15)S/ s .i i SO.,

From Eqs. (19.9.1), (19.9.13), and (19.9.15) we can solve iteratively

for b.i . From Eq. (19.9.15) we see that, for any iteration , Ob., is a

rank reduction solution for Eq. (19.9.13), irrespective of how well the

solution has stabilized.

We let

= sbuI b. 
(19.9.16)
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Then from Eqs. (19.9.1) and (19.9.16)

b(3) s917)S.i s .i S s.i fl(9..7

Let

W = i R SPA (19.9.18)

From Eqs. (19.9.10), (19.9.14), and (19.9.18)

sa =,/7. so., (19.9.19)

From Eqs. (19.9.15), (19.9.18), and (19.9.19)

b = s (19.9.20)

The computational equations then for the b are given by Eqs. (19.9.16)

through (19.9.20), and the successive iR's are calculated from Eq. (19.9.13).

The variance reduction in the i R matrix accounted for by the s approximation

to b is obviously given by s in Eq. (19.9.16).
to b isoi E.(9..6.

19.9.2 Simultaneous Factor Matrix from Correlation Matrix

From Section 18.4.2 we have, as the s approximation to the simultaneous

varimax factor matrix,
D b' b

b(3)  b s s (19.9.21)s s n

al s = sC (19.9.22)

C' C = sQ sA2 sQ' (19.9.23)

H = c Q s (19.9.24)s5 , S s SW

s b a 5H (19.9.25)
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From Eqs. (19.9.22) and (19.9.23)

8 PaalS1 QL2 Q/(19.9.26)

From Eqs. (19.9.22), (1.9924~), and (19.9.25)

S = a a/ 1  S" Q& 1 (19.9.27)

We let

a a/ 
(19.9.28)

From Eqs. (19.9.26) and (19.9.28)

SQ S62 SQ1  =SPI R' a (19.9.29

From Eqs. (19.9.27) and (19.9.28)

s~b= R so SQS I. (19.9.30)

Let

R SIS(19.9.31)

= G ' S M (19.9.32)

From Eqs. (19-9.29) and (19.9.32)

SQ Sd Q1 = SG (199.33)

From Eqs. (19.9.30) and (19.9.31)

Then Eqs. (19.9.21) and (19.9.31) through (19.9.34) constitute the computation-

al equations for calculating the a approximation to the b matrix. That any
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approximation sb of width m is a solution for

R = R - b bI  (19.9.35)mn s s

such that the rank of R is m less than the rank of R, can be readily shown

as follows. Dropping the prescripts, we have from Eqs. (19.9.29) and (19.9.30),

b = R 0 (PI R )-2 (19.9.36)

Substituting Eq. (19.,9.36) in Eq. (19.9.35)

R = R - R P (PI R 0)-' PI R (19.9.37)

which is, of course, the rank reduction form.

The iterations may proceed until tr aG converges to the desired degree

of decimal accuracy.

19.9.3 Successive Factor Varimax from Data Matrix

Given the data matrix Z such that

R = z' z (19.9.38)

The successive factor varimax from the correlation matrix, according to

Section 19.3.2, is given by the set of equations

bu (19.9.39)s~i s .A S.i

P b(3 )  b s i (19.9.4o)
s.i S i .i n

W = R P (19.9.4l)
Si i if.
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-'a W sp (19.9.42)

sw.i

b. a.2 (19.9.43)

and

.R -b b' (19.9.44)
i+ R  1 .1 .1

From Eqs. (19.9.38), (19.9.41), (19.9.42) and (19.9.43)

Sb. =' 1-- (19.9.45)
W Z z S../si z s s i

Let

sUU. i sP.i (19.9.46)

U

From Eqs. (19.9.45), (19.9.46), and (19.9.47)

b =Z' J (19.9.48)

Consider now the residual matrix

Z = -Y b' (19.9.49)
2 1 .1 .1

From Eqs. (19.9.48) and (19.9.49)

= Z-Y Y' Z (19.9.50)1z=i .1 .11l

or

z = (I - Y1 Y 1
)

1 z (19.9.51)
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From Eqs. (19.9.47) and (19.9.51)

2Z' 2Z = 1z' (I - Y.1 Y. iz  (19.9.52)

From Eqs. (19.9.38), (19.9.44), (19.9.48), and (19.9.52)

bZ' 2Z = 1 R-b. b 1  (19.9.53)

or from Eqs. (19.9.38) and (19.9.53)

2Z' 2Z = 2R (19.9.54)

In general, if

Z = Y.b'. (19.9.55)
i+lz = z " . .i

then

i+l1 i+lz  i+ R  (19.9.56)

Eqs. (19.9.39), (19.9.40), (19.9.46), (19.9.47), (19.9.48), and (19.9.55)

may therefore be used to calculate the successive varimax factor vectors

directly from the standard score matrix. Since Eq. (19.9.44) is a rank re-

duction form, Eq. (19.9.56) shows that Eq. (19.9.55) is also a rank reduc-

tion form for any approximation s to Y and b

Consider then

Y = (Y., "'" Y.m)  (19.9.57)

b = (b.1 .. b. (19.9.58)
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Then in

Z Z -Y b' (19.9.59)m

the rank of Z is m less than the rank of Z. Also, it should now be obvious

that Y is the factor score matrix corresponding to the factor loading matrix

b.

19.9.4 Simultaneous Varimax from the Data Matrix

Consider again the data matrix Z, such that

R = Z' Z (19.9.60)

The simultaneous varimax matrix from the correlation matrix, according to

Section 19.4, is given by the set of equations

D bI b

sP = b( 3 ) - b s s (19.9.61)s s n

M = R s (19.9.62)

s = sP' M (19.9.63)

s+b = sM SG (19.9.64)

From Eqs. (19.9.60) and (19.9.62)

sM  = Z' z so (19.9.65)

From Ejqs. (19.9.60), (19.9.62), and (19.9.63)

sG BPI~ Z' z sp (19.9.66)
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From Eqs. (19.9.62) throulgh (19.9.66)

b+ Z' Z 0Z (19.9.67)

Let

z sp= s (19.*9.68)

Let

sU= s 6 Q/ (19.9.69)

From Eqs. (19.9.66) and (19.9.68)

sG= sU' s U (19.9.70)

From (19.9.60) and (19.9.70)

sr = SQ 8 2 8Q' (19.9.71)

Let

8Y = SU sG-2 (19.9.72)

From Eqs. (19.9.71) and (19.9.72)

sY = sU SQ S g1 s (19.9.73)

From Eqs. (19.6.67) tlu'ougi (19.9.73)

sb = z' Sy (19.9.74)

We can then solve for successive approximations to b and Y by Eqs. (19.9.61),,

(19.9.68), (19.9.70), (19.9.71), and (1,9.9.73).



From Eqs. (19.9.69) and (19.9.73)

sY = P sQ' (19.9.75)

hence

s Y  (19.9.76)

Let

mZ Z- Y b' (19.9.77)

From Eqs. (19.9.74) and (19.9.77)

Z = Z - Y Y'.Z (19.9.78)

or

mZ = (I - Y Y') z (19.9.79)

From Eqs. (19.9.60), (19.9.74), (19.9.76), and (19.9.79)

Z' Z = R- b b' (19.9.80)

hence

R = R- b b/ (19.9.81)m s s

In Section 19.9.2 we proved the rank of mR is m less than the rank of R.

Hence the rank of mZ in Eq. (19.9.77) is m less than the rank of Z for any

approximation s.

19.9.5 Successive General Varimax Vectors

The direct solutions for the successive factor general varimax differ

from the solutions which maximize the variance of squared factor loadings
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only in the calculation of the so.i vectors.

Let

2 m 1
k . . (19.9.82): e m2 -l1

where

m 1 m2  (19.9.83)

and m1 and m2 are both integers greater than 0.

Then

1k b( k )

1 b' - b(k-1) i (19.9.84)sSi s i s.i n

From Eq. (19.9.82)

2 (2m -m 2 ) + 1
2 k - 1 2m1 " l (19.9.85)

2 (I - m) + 1

k - 1 1 2 (19.9.86)
2m2 - 1

If we wish to calculate the successive general varimax vectors directly

from the correlation matrix, we use the same equations as in Section 19.3.2

with the exception of the sli vector indicated in Eq. (19.9.84).

If we wish to calculate the successive general varimax vectors directly

from the data matrix, we use the same equations as in 19.5.2 with the excep-

tion of the s . vector which is now given by Eq. (19.9.84).

19.9.6 Simultaneous General Varimax Factor Matrix

The rationale for the simultaneous general varimax directly from the

correlation or data matrices is the same as for the special case of the
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squared factor loadings, except that the s3 matrix is different for values

of k other than 2. The general expression for so is given by

bk- b(k-1 D) , b (k) (19.9.87)

where Dl, b is a diagonal of the vector of column sums of the b(k) matrix.
b 5



CHAPTER 20

FACTOR SCORE MATRICES

20.1 Introduction

Over the past 40 years a vast amount of attention has been given to

Ithe factor analysis of correlation matrices. In this book we have already

devoted a large number of chapters to various methods for getting factor

loading matrices from correlation matrices. We saw in Chapter 4 how we may

view the general factor analysis problem as one of approximating a data

matrix by another of lower rank. We saw that the problem viewed in this

way is one of finding two basic matrices whose major product is in some

sense a satisfactory approximation to the data matrix. The factors of

this major product have a common order much less than the smaller order of

the data matrix, and therefore the rank of the product is equal to the

common order of its factors.

Again in Chapter 4 we saw how we may regard the postfactor of this

product as the transpose of the factor loading matrix. We also saw how

we may regard the prefactor as the factor score matrix. Therefore, the

factor score matrix postmultiplied by the transpose of the factor loading

matrix yields the lower rank approximation to the data matrix. In this

formulation of the problem, the communality problem does not appear. There

seems to be no clear justification for considering the communality concept

when we view factor analysis, not as a method of factoring the correlation

or covariance matrix, but rather as one of factoring the data matrix.

Guttman (1955) has discussed an interesting exception, which is, however,

beyond the scope of this book.

In any case, with all of the attention given to the solutions for
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factor loading matrices, very little has been devoted to the derivation of

factor score matrices. This is especially curious inasmuch as the scienti-

fic, logical, and philosophical status of the factor score matrix would ap-

pear to be at least as respectable as that of the factor leading matrix.

Some would argue, of course, that the factor loading matrix is of more funda-

mental importance because it enables us to identify or define the fundament-

al variables of a particular discipline. Certainly there is something to

be said for this point of view, if one regards the major objective of the

simple structure or transformation technique as one of finding factor load-

ings which are relatively invariant from one sample of entities and attri-

butes to another.

From a philosophical point of view, these considerations may Justify

greater interest in the factor loading matrix. However, from a purely form-

al point of- view, considering only the mathematics involved, there is no

reason to be more interested in the factor loading matrix than in the factor

score matrix. Considering the model in which the major product Mf these

two matrices approximates the data matrix, there is actually nothing in the

mathematics of the model which would in some sense give higher status to

the postfactor than to the prefactor.

This statement is even more cogent if we recall Chapters 13 and 15

dealing with linear transformations involving both scale and origin, which

may be applied to both the right and the left hand sides of the data matrix.

We have seen that these operations can materially affect the results of a

factor analysis, and that the traditional practice of metricizing the data

matrix by attributes rather than by entities, is more or less arbitrary. In
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any case, the problem of finding the left hand factor of the matrix product

which purports to approximate the data matrix appears to merit considerably

more attention than it has received in the past.

But even the attention which the problem has received seems to have

caused as much confusion as clarification for the central issues involved.

These are actually rather simple, if one does not become unduly involved

with the red herrings of the communality and specificity problems. One

need only examine the bewildering, even if at times ingenious, traditional

discussions of the factor measurement problem to realize that they have

often strayed far from the solid ground of the data matrix.

Some investigators have argued that factor scores give no more infor-

mation than do the measures from which they are derived, and that there-

fore, at best these scores are of more theoretical than practical interest.

Unfortunately, these investigators have asked the wrong question. Instead

of asking whether the factor scores give more information than the original

data scores, they should have asked whether the original data scores give

more information than the factor scores. If one asks this latter question,

he may conclude that the data matrix may yield not only relevant or system-

atic information, but also random or unreliable information.

One may then regard the lower rank data matrix approximation model as

a procedure for eliminating from the data matrix random or irrelevant vari-

ance. Horst (1941) has utilized the factor score matrix to reduce the ef-

fect of this variance. The method has never received wide attention. Leiman

(1951) has applied this conception of factor analysis objectives to experi-

mental data. He has found that, by the use of lower rank approximation
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matrices to data matrices, one may obtain multiple regression parameters

which hold up better on cross-validation than when the data matrices are

employed directly in the traditional methods. A much more extensive applica-

tion of factor score matrices and the lower rank approximation model has

been made by Burket (1964). In his work it is clear that for prediction

purposes the lower rank approximation procedures have a definite advantage

over the conventional multiple regression procedures. This application of

the factor score concept will be considered in more detail in Chapter 23.

Here we will present various types of methods for calculating factor score

matrices.

20.2 Kinds of Factor Score Solutions

We may classify the various kinds of solutions for factor 'Score matrices

to correspond with the procedures for getting factor loading matrices which

we have discussed in the previous chapters. The solutions will be presented

under the headings of the centroid factor score matrix, the multiple group

factor score matrix, the principal axis factor score matrix, the least square

factor score matrix, and the image analysis factor score matrix.

20.2.1 The Centroid Factor Score Matrix. The calculation of a centroid

factor score matrix directly from the data matrix has already been explicit-

ly considered in Chapter 12. In this process, we arrive successively at

factor loading vectors and factor score vectors. However, in this chapter

we shall present the calculation of a factor score matrix based on a pre-

vious calculation of the centroid factor loading matrix. This factor load-

ing matrix, together with a matrix of sign vectors, yields a transformation

matrix which, when applied to the data matrix, gives the centroid factor
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score matrix.

20.2.2 The Multiple Group Factor Score Matrix. We shall see that

by the use of a binary grouping matrix we can also calculate a multiple

group factor score matrix directly from the data matrix. As a matter of

fact, it is easier to use the multiple group method directly on the data

matrix than it is to use the centroid method, because in the centroid

method we must have a matrix of sign vectors, and this ordinarily becomes

available only with a successive factor solution. In the centroid method,

it will be recalled that residual matrices are calculated, and with each

residual matrix one iterates to the optimal sign vector.

On the other hand, in the case of the multiple group method, one pre-

sumably has an a priori binary grouping matrix. For this reason one need

not go through the actual calculation of the multiple group factor loading

matrix before calculating the multiple group factor score matrix.

20.2.3 The Principal Axis Factor Score Matrix. Perhaps the simplest

and most elegant of all of the methods for getting factor score matrices is

the basic structure method. As we have seen in Chapter 4, the principal

axis or basic structure type solution yields the least square approximation

to the data matrix for any specified rank of the approximation matrix. We

have seen that the principal axis or basic structure factor loading matrix

is both a rank reduction solution and a least square approximation to the

correlation or covariance matrix. It is easy to show that the first m

vectors of the left basic orthonormal matrix of the data matrix yield pre-

cisely the principal axis factor score matrix, and that this is an ortho-

gonal matrix.
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20.2.4 The Least Square Factor Score Matrix. Having given some arbit-

rary factor loading matrix, whether centroid, multiple group, or principal

axis, we may wish to determine that factor score matrix which, when post-

multiplied by the transpose of the factor loading matrix, yields a product

which is the least square approximation to the data matrix. This means that

the sums of squares of elements of the residual matrix will be a minimum.

This will in general be true, as we have seen, for the principal axis method.

We can also find factor score matrices for the centroid and the multiple

group methods which are least square solutions to the data matrix. As a

matter of fact, for any arbitrary basic matrix of width equal to the number

of attributes and of height equal to the number of factors, we can find what

particular vertical matrix, postmultiplied by the transpose of the arbitrary

factor matrix, yields a product which is the best approximation to the data

matrix in the least square sense.

20.2.5 The Image Analysis Factor Score Matrix. To our knowledge, no

detailed analysis for the calculation of the factor score matrix from the

image type factor loading matrix has been previously presented. Harris (1962)

has given an interesting theoretical analysis of this problem in a recent

paper. The image analysis approach implies a transformation of the data

matrix. It is therefore of interest to see what procedures are appropriate

in the calculation of factor score matrices based on these image factor load-

ing matrices and the transformed data matrix.

20.3 The Centroid Factor Score Matrix

20.3.1 Characteristics of the Method. We have indicated in the pre-

vious section that the centroid factor loading matrix may be used in the
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solution of a factor score matrix, such that the major product of the two

will give the best least square approximation to the data matrix. We shall,

however, consider here only a particular type of centroid factor score solu-

tion. In this solution the factor score matrix is an orthogonal matrix.

It has been repeatedly said or implied that the centroid solution

yields orthogonal factors. But like much of the discussion about ortho-

gonal factors, the definition of orthogonal factors has been vague. We

shall insist on using the term orthogonal only with respect to vectors. We

shall insist that the term orthogonality is not useful unless considered

in this connection. By saying that two vectors are orthogonal, we simply

mean that their minor product is 0.

The solution for the centroid factor score matrix which we shall con-

sider does yield factor scores such that the minor product of any pair of

factor score vectors taken from the factor score matrix will be 0.

A further characteristic of this method is that the solution is a rank

reduction solution. That is, the solution is such that, when the major

product of the factor score matrix by the factor loading matrix is sub-

tracted from the data matrix, the residual matrix is of rank equal to the

rank of the data matrix less the number of factors.

This solution, like all of the solutions for factor score matrices

which we shall consider, involves no iterative procedures. In this respect

it is relatively simple and straightforward computationally.

The methods outlined in all of the procedures in this chapter are con-

cerned particularly with the calculation ef transformation matrices which may

be applied to data matrices to convert them to factor score matrices.
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Therefore, in actual practice it may be desirable to use these transforma-

tion matrices on data matrices other than those from which the factor load-

ing matrices were calculated. I-hen this is the case, the resulting factor

score matrices cannot be expected to exhibit precisely the same charactcer-

istics as when these transformation matrices are applied to the original

data matrix.

20.3.2 Computational Equations

20.3.2a Definition of Notation

a is the centroid factor loading matrix.

L is the matrix of sign vectors.

Y is the centroid factor score matrix.

Z is the normalized data matrix.

20.3.2b The Equations

t = a' L (20.3.1)

B L t' (20.3.2)

Y = zB (20.3.3)

20.3.3 Computational Instructions. We begin with the centroid factor

loading matrix a. We also have given the matrix of sign vectors used in the

calculation of the centroid factor loading matrix, which we designate as L.

We calculate the upper triangular matrix as indicated in Eq. (20.3.1).
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This is the transpose of the factor loading matrix postmultiplied by the

sign matrix.

Next we calculate Eq. (20.3.2), which is the matrix of sign vectors

postmultiplied by the inverse of the triangular matrix in Eq. (20.3.1).

We now calculate the centroid factor score matrix, as indicated in Eq.

(20.3.3). This is the data matrix postmultiplied by the transformation

matrix of Eq. (20.3.2).

20.3.4 Numerical Example. We begin with the data matrix used in

Chapter 19, whose corresponding correlation matrix is the same used in pre-

vious chapters. The data matrix is repeated for convenient reference in

Table 20.3.1.

Table 20.3.2 gives the centroid factor loading matrix for three factors,

calculated from the correlation matrix.

Table 20.3.3 gives the matrix of sign vectors by rows, used in calcu-

lating the centroid matrix, and subsequently in the calculation of the factor

score matrix.

Table 20.3.4 gives the centroid factor score matrix for three factors,

calculated by means of Eqs. (20.3.1) through (20.3.4).

Table 20.3.5 gives the minor product moment of the factor score matrix.

As proved in Section 20.8.1, this should be an identity matrix, which it is

within limits of rounding error.

f
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Table 20.3.1 - Normalized Deviation Data Matrix

0.128 o.181 o.4i21 0.5o6 0.857 0.746 0.280 0.178 0.246
0.764 0.740 0.563 -0.387 -0.293 -0.202 0.261 0.281 0.045
-0.030 -o.o46 m.14 0.147 -0.109 -0.135 0.640 0.682 o.661
-0.280 -0.351 -0.326 .-0.023 -0.109 -o.186 0.083 0.091 -o.6511
-0.336 -0.3o6 -0.429 -0.542 -0.006 -0.153 -0.428 0.056 -0.124
-0.276 -0.324 -0.271 -0.370 -0.225 0.035 0.129 -o.44+6 -o.124
0.057 -0.070 -o.016 0.006 0.152 -o.441 -0.166 -0.354 -0.033
-0.010 -0.140 0.326 -0.004 -0.258 -0.091 -0.410 -0.200 -0.101
-0.303 0.227 -0.014 0.029 -0.102 -0.125 -0.086 -0.106 o0.074
0-086 0.057 -0.003 0.161 0.073 0.134. -0.082 -0.067 -0.009
o.164 0.106 -0.124 0.234 -0.002 0.227 -0.072 0.025 -0.156
0.036 -0.074. -0.142 0.242 0.023 0.192 -0.148 -0.119 0.011

Table 20-3.2 - Centroid Factor Loading Matrix by Rows for Three Factors

0.659 o.684 0.730 0.617- 0.542 0.588 0.637 0.606 0.708
0.457 0.452 0.283 -0.601 -0.709 -0.663 0.271 0.346 0.164
o.456 o.439 0.451 -0.209 0.094 0.116 -0.479 -o.488 -0.378

Table 20.3.5 - Sign Matrix by Rlows for Three Factors

Table 20.3.4 - Normalized Centroid Factor Score Matrix by Columns

0.614 -0.525 0.175
0.307 .0.719 0.462
0.316 0.329 .0.810
-0.3o4 -0.108 -0.191
-0.393 0.007 0.019
-0.324 -0.003 -0.015
-0.150 0.011 0.105
-0.154 0.043 0.211
-0.096 0.015 -0.004
o.o6i -0.133 0.083
0.124 -0.123 -0.031
0.004 -0.228 -0.011

Table 20.3.5 - Minor Product Moment of Centroid Factor Score Matrix

0.997 -0.001 0.002
-0.001 0.999 0.000
0.002 0.000 1.001



154

20.4 The Multiple Group Factor Score Matrix

20.4.1 Characteristics of the Solution. The solution for the multiple

group factor scores, as already indicated, does not first require the calcu-

lation of the multiple group factor loading matrix. If we have the binary

grouping matrix, it can be applied directly to the correlation matrix to

yield a transformation matrix which, when applied to the data matrix, gives

the factor score matrix. As in the case of the centroid method, this solu-

tion is not a least square solution in the sense that the major product of

the factor score and factor loading matrices gives the best least square

fit to the data matrix. However, it does yield a factor score matrix which

is orthonormal and of rankk reduction form.

20.4.2 Computational Equations

20.4.2a Definition of Notation

R is the correlation matrix.

f is a binary grouping matrix.

t is a lower triangular matrix.

Y is the multiple group factor score matrix.

Z is the normalized data matrix.

20.4.2b The Equations

G f R f (20.4.1)

t t' = G (20.4.2)
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B = f t' (20.4.3)

Y ZB (2o.4.4)

20.4.3 Computational Instructions. We assume that the correlation

matrix R and a binary grouping matrix f are given. We then calculate the

matrix in Ski. (20.4.1). This is the correlation matrix postmultiplied by

the binary grouping matrix and premultiplied by its transpose.

Next we calculate the triangular factors of the matrix of Eq. (20.4.1),

as indicated in Eq. (20.4.2).

In Eq. (20.4.3) we postmultiply the binary grouping matrix by the in-

verse of the upper triangular factor in Eq. (20.4.2).

The multiple group factor score matrix is indicated in Eq. (20.4.4).

This is the data matrix postanultiplied by the transformation matrix of Eq.

(20.4.3). The minor product moment of this matrix is shown in Section 20.8.2

to be the identity matrix.

20.4.4 Numerical Example. We use the same data matrix and correlation

matrix as in the previous section.

Table 20.4.1 gives the binary grouping matrix by rows for three factors.

Table 20.4.2 gives the normalized multiple group factor score matrix by

rows for three factors. The matrix was calculated by means of Eqs. (20.4.1)

through (20.4.4).

Table 20.4.3 gives the minor product moment of the multiple group factor

score matrix. Within rounding error this is an identity matrix, as it should

be according to Section 20.8.2. In this sense the multiple group factors may

be said to be orthogonal, but only if the factor scores are calculated in
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this manner.

The same may also be said for the centroid factors when the factor

score matrix is calculated according to Section 20.3.
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4

Table 20.4.1 - Binary Grouping Matrix by Rows for Three Factors

1. 1. 1. 0. 0. 0. 0. 0. 0.
0. 0. 0. 1. 1. 1. 0. 0. 0.
0. 0. 0. 0. 0. 0. 1. 1. 1.

Table 20.4.2 - Normalized Multiple Group Factor Score Matrix for Three
Factors

0.262 0.767 0.007
0.743 -o.470 0.022
-0.022 -0.033 0.902
-o.34 -0.062 -0.037
-0.385 -0.203 0.009
-0.313 -0.161 -O.O10
-0.010 -0.107 -0.216
0.o63 -0.147 -0.312
-0.032 -0.071 -o.o86
0.050 0.133 -0.126
0.052 0.168 -0.016

-o.o65 0.187 -0.128

Table 20.4.3 - Minor Product Moment of Multiple Group Factor Score Matrix

1.000 0.000 -0.003
0.000 1.000 -0.001
-0.003 -0.001 1.000
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20.5 The Principal Axis Factor Score Matrix

20.5.1 Characteristics of the Method. As indicated in the previous

discussion on kinds of methods, the principal axis solution is the simplest

of the methods, if the basic structure or principal axis factor loading

matrix is already available. One of the most important advantages of the

principal axis method is that it gives, at the same time, a least square,

a ran reduction, and an orthogonal solution for the factor score matrix.

20.5.2 Computational Equations

20.5.2a Definition of Notation

a is the principal axis factor loading matrix.

3m

8 is the basic diagonal of the correlation matrix.

Y is the principal axis factor score matrix.

Z is the normalized data matrix.

20.5.2b The Equations

B = a 8 (20.5.1)

Y = Z B (20.5.2)

20.5.3 Computational Instructions. The computational instructions

for the principal axis factor score matrix are very simple. We begin with

the factor loading matrix a and the basic diagonal B. Eq. (20.5.1), then,

directly gives the transformation matrix. This is simply the factor loading

matrix postmultiplied by the inverse of the 8 diagonal.
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The factor score matrix is then calculated in the usual manner, as in-

dicated in Eq. (20.5.2).

Hotelling (1933) published this solution for the factor score matrix.

However, it does not seem to be well known and has not been used extensively.

21.5.4 Numerical Example. In this example we use the same data and

correlation matrices as in the previous sections.

Table 20.5.1 gives the first three basic diagonals of the correlation

matrix, as found in early chapters giving basic structure solutions.

Table 20.5.2 gives the first three principle axis factor vectors by

rows, as found in previous chapters, for example, Chapters 7 and 8.

Table 20.5.3 gives the normalized principal axis factor score matrix

for three factors, as calculated from Eqs. (20.5.1) and (20.5.2).

Table 20.5.4 gives the minor product moment of thc principal axis

factor score matrix. This is the identity matrix to within rounding error.
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Table 20.5.1 - First Three Basic Diagonals of Correlation Matrix

3.749 2.050 1.331

Table.20.5.2 - Principal Axis Factor Loading Matrix by Rows for Three
Factors

0.717 0.740 0.773 0.556 0.463 0.518 0.640 0.615 0.715
0.493 0.478 0.296 -0.649 -0.744 -0.694 0.080 0.166 -0.034
0.350 0.322 o.4o6 O.068 o.181 o.188 -0.588 -0.621 -0.369

Table 20.5.3 - Normalized Principal Axis Factor Score Matrix for Three
Factors

0.555 -0.569 0.179
0.386 0.767 0.205
0.325 0.092 -0.825
-0.328 -0.o65 -0.198
-0.403 O.OO1 -o.146
-0.325 -0.023 -0.093
-o.140 0.053 0.200
-0.129 0.107 0.317
-0.088 0.037 0.049
0.052 -0.098 0.143
o.114 -0.107 0.052
-0.014 -0.195 0.109

Table 20.5.4 - Minor Product Moment of Principal Axis Factor Score Matrix

0.998 -0.001 0.002
-0.001 1.000 0.000
0.002 0.000 1.002
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20.6 The Least Square Factor Score Matrix

20.6.1 Characteristics of the Method. This method is not mutually

exclusive of those previously considered. It may be applied to any factor

loading matrix such as the centroid, the multiple group, or the principal

axis. When applied to the principal axis factor matrix it yields precisely

the solution given in the preceding section. The least square solution

yields a factor score matrix such that, when the major product of this

matrix and the factor loading matrix is subtracted from the data matrix,

the sum of squares of elements in the residual matrix is a minimum. This

solution, as all least square solutions in general, can be shown to be a

rank reduction solution. The left arbitrary multiplier, however, is some-

what more involved than in other methods, as can be seen from Section 20.9.4.

In general, also, the computations are somewhat more involved than they are

for the solutions we have already discussed.

20.6.2 Computational Equations

20.6.2a Definition of Notation

a is an arbitrary factor loading matrix.

Z is the normalized data matrix.

Y is the arbitrary factor score matrix.

20.6.2b The Equations

G = a' a (20.6.1)

B =aG (20.6.2)

Y = Z B (20.6.3)
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20.6.3 Computational Instructions. We begin with any arbitrary factor

loading matrix.

Eq. (20.6.1) gives the minor product moment of the arbitrary factor

loading matrix.

The next step is indicated by Eq. (20.6.2), which is the factor load-

ing matrix postmultiplied by the inverse of the matrix in Eq. (20.6.1). This

is the matrix which transforms the data matrix to the factor score matrix.

Eq. (20.6.3) shows the least square factor score matrix as the product

of the data matrix postmultiplied by the transformation matrix of Eq.

(20.6.2).

20.6.4 Numerical Example. We use the same data and correlation matri-

ces as in the previous sections. We also use the centroid factor matrix of

Section 20.3.4.

Table 20.6.1 shows the minor product moment matrix of the centroid

factor matrix for three factors.

Table 20.6.2 gives the inverse of the matrix in Table 20.6.1.

Table 20.6.3 gives the product of the natural order of the matrix in

Table 20.6.1 postmultiplied by the matrix of Table 20.6.2. This gives the

matrix for transforming the data matrix to the least square factor score,

matrix.

Table 20.6.4 gives the least square factor score matrix.

Table 20.6.5 gives the minor product moment of the least square factor

score matrix. This is not an identity matrix, nor should it be so, unless

the factor loading matrix consists of basic structure factors.
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Table 20.6.1 - Minor Product Moment of Centroid Factor Loading Matrix

for Third Factors

3.730 0.170 0.052
0.170 2.017 0.156
0.052 0.156 1.280

Table 20.6.2 - Inverse of Minor Product Moment of Factor Loading Matrix

0.269 -0.022 -0.008
-0.022 0.502 -0.060
-0.008 -0.060 0.789

Table 20.6.3 - Matrix for Transforming Data Matrix to Factor Score Matrix

o.164 0.188 0.327
0.171 0.185 0.313
0.187 0.099 0.333
o.181 -0.303 -0.134
o.161 -0.374 0.112

0.172 -0.353 0.127
0.169 0.151 -0.399
0.160 0.190 -0.411
0.190 0.00 -0.314

Table 20.6.4 - Least Square Factor Score Matrix

0.611 -0.540 O.100
0.302 0.731 0.429
0.31,9 0.316 -0.812
-0.316 -o.o65 -0.208
-o.4oo -o.007 -O.lO9
-0.321 -0.031 -o.o83
-0.147 -0.002 0.174
-0.143 0.025 0.299
-0.092 0.018 0.037
o.o61 -o.123 0.112
0.124 -0.104 0.012
0.005 -0.215 0.040

Table 20.6.5 - Minor Product Moment of Least Square Factor Score Matrix

0.998 -0.002 0.004
-o.ooe 1.oo4 0.004
0.004 0.004 1.050
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20.7 The Image Analysis Factor Score Matrix

20.7.1 Characteristics of the Method. When the image analysis approach

to factor analysis is used, we may employ any of the factoring methods dis-

cussed so far: the principal axis, the group centroid, the centroid, the

multiple group, or other methods. Furthermore, we may also use any of the

metricizing methods of Chapters 13 and 15. We shall in our description of

computational precedures indicate a scaling diagonal. In particular, this

may be an identity matrix.

20.7.2 Computational Equations

20.7.2a Definition of Notation

R is the correlation matrix.

D is an attribute scaling matrix.

t is a triangular matrix.

Y is the image factor score matrix.

Z is the normalized data matrix.

20.7.2b The Equations

M = (I - R"f D'-) D (20.7.1)

G = '( -2 D'-1 + R1 D -) D (20.7.2)

C =L' GL (20.7.5)
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t t' C (20.7.4)

B = M (L t 1 ) (20.7.5)

Y = Z (20.7.6)

20.7.3 Computational Instructions. We shall assume the correlation

matrix given. We then calculate a matrix M as indicated in Eq. (20.7.1).

This will be recognized as the matrix which transforms the data matrix to

the image of the data matrix. The matrix on the extreme right of the right

hand side of the equation is a scaling diagonal. It may be chosen accord-

ing to one of the methods suggested in Chapter 16, or it may be determined

according to the self-scaling procedures of Chapter 15.

We then calculate the image covariance scaled matrix, as in Eq. (20.7.2).

The part in parentheses on the right hand side of this equation will be recog-

nized as the standard covariance image matrix of Guttman (1953). It is pre-

and postmultiplied by the diagonal scaling matrix of Eq. (20.7.1).

Next we calculate the C matrix in Eq. (20.7.3). This is the matrix of

Eq. (20.7.2) premultiplied by the transpose of an L matrix and postmultiplied

by the natural order of this matrix. This L matrix is of the same orde..as the

factor loading matrix, which presumably has been obtained from the G matrix.

In particular, it may be a binary grouping matrix, a matrix of sign vectors

for the centroid method, or a principal axis factor loading matrix calculated

frcm the G matrix of Eq. (20.7.2). This depends on which particular type of

factor loading matrix one has calculated.

Eq. (20.7.4) shows a triangular factoring of the matrix in Eq. (20.7.3).
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Next the L matrix is postmultiplied by the inverse of the upper tri-

angular factor of Eq. (20.7.4), and then the matrix of Eq. (20.7.1) is post-

multiplied by this product, to give the matrix B of Eq. (20.7.5).

The matrix of Eq. (20.7.5) is the transformation matrix which, when ap-

plied to the data matrix as in Eq. (20.7.6), yields the factor score matrix.

This factor score matrix is orthonormal and of rank reduction form. It is

not a least square solution, unless L in Eq. (20.7.3) happens to be the basic

structure or principal axis factor loading matrix for the covariance matrix

_ in Eq. (20.7.2).

20.7.4 Numerical Example. We use the same data and correlation matri-

ces as in the previous sections, and the grouping matrix of Table 20.4.1.

The identity matrix is taken as the scaling diagonal.

Table 20.7.1 gives the image covariance matrix.

Table 20.7.2 gives the image factor score matrix for three factors,

as calculated by means of Eqs. (20.7.1) through (20.7.6).

Table 20.7.3 gives the minor product moment of the image factor score

matrix. This is an identity matrix to within rounding error, as it should

be.
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Table 20.7.1 - Image Covariance Matrix

0.733 0.688 0.662 0.120 0.065 0.101 0.294 0.302 0.336
0.688 0.744 0.666 0.147 0.067 0.117 0.316 0.307 0.358
0.662 0.666 0.691 0.215 0.169 0.239 0.288 0.305 0.355
O.120 o.147 0.215 0.511 o.488 o.494 0.218 0.178 o.285
O.065 O.067 o.169 0.488 0.572 o.486 o.161 O.081 o.246
0.101 0.117 0.239 0.494 o.486 0.562 O.160 o.142 0.262
0.294 o.316 0.288 0.218 o.161 O.160 o.481 0.396 o.418
0.302 0.307 0.305 0.178 O.081 O.142 0.396 0.499 0.388
0.336 0.358 0.355 0.285 0.246 0.262 0.418 0.388 0.436

Table 20.7.2 - Image Factor Score Matrix for Three Factors

0.265 0.796 -0.058
0.734 -O.490 0.013
0.018 0.018 0.881

-0.359 -0.112 0.121
-0.383 -0.170 -0.019
-0.316 -0.106 -0.068
-0.025 -O.lo4 -0.248
0.019 -0.113 -0.331

-0.034 -0.078 -0.051
0.054 0.102 -0.115
0.079 0.111 -0.003
-0.053 0.144 -O.111

Table 20.7.3 - Minor Product Moment of Image Factor Score Matrix

1.ooo o.ooo -o.004
0.000 1.000 -0.001
-o.0o4 -o.ool o.999
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20.8 Mathematical Proofs

20.8.1 The Centroid Factor Score Matrix

Consider any basic matrix L of order n x m.

Let

a * 1  ; .... (20.8.1)
/L', R L.i

where

S R a' (20.8.2)i+lR  iR  a. .i

Let

a = (a. 1 ... a.m) (20.8.3)

We can prove, by the methods of Chapter 5, from Eqs. (20.8.1) and (20.8.2)

that

L' a = ta  (20.8.4)

where ta is lower triangular.

Consider now

L, R L = th (20.8.5)

and

b = R L t (20.8.6)
S 0b

From Eqs. (20.8.5) and, (20.8.6)
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L' b = t (20.8.7)

From Eqs. (20.8.2) and (20.8.3)

m+lR = R - a a' (20.8.8)

From Eqs. (20.8.1) through (20.8.4) it can be shown that

m+lR L = 0 (20.8.9)

From Eqs. (20.8.8) and (20.8.9)

L' R L = L' a a' L (20.8.10)

From Eqs. (20.8.5), (20.8.6), and (20.8.7)

L' R L = L' b b' L (20.8.11)

From Eqs. (20.8.4), (20.8.7), (20.8.10), and (20.8.11)

ta = tb (20.8.12)

From Eqs. (20.8.4), (20.8.7), and (20.8.12)

L' a = L' b (20.8.13)

If m = n and L is nonsingular, we have from Eq. (20.8.13) that a b. But

from Eqs. (20.8.1) and (20.8.2) the solution for any a i is independent of

the solution for any a i+k Also, from Eq. (20.8.6) the solution for any

b is independent of the solution for any bi+k. Hence, in general

a b (20.8.14)
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Consider then the n x m matrix L of sign vectors for the centroid

factor solution such that

R R- a' (20.8.15)
i+l i i

where

R L
i .a (20.8.16)
/ RL

From Eqs. (20.8.3) and (20.8.4) we can express the centroid factor matrix

as a function directly of the correlation matrix by

a = R L t'1  (20.8.17)

where

t t' = L' R L (20.8.18)

We may now let L and L' Z' be the right and left arbitrary multipliers

in the rank reduction equation and write

E = Z - Z L [(L' Z') Z LI 1 (L' Z') Z (20.8.19)

If

R = Z' Z (20.8.20)

we have from Eqs. (20.8.18), (20.8.19), and (20.8.20)

E = Z - (Z L t"') (t" L' R) (20.8.21)
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We now consider the general lower rank approximation form to the

data matrix

E Z -Y a' (20.8.22)

If a is given by Eq. (20.8.17), then from Eq. (20.8.21)

Y = Z L t'1  (20.8.23)

and from Eqs. (20.8.18), (20.8.20), and (20.8.23)

Y' y = I (20.8.24)

If now we have an orthonormal transformation

b = a H (20.8.25)

we consider W such that

W b' = Y a' (20.8.26)

From Eqs. (20.8.25) and (20.8.26)

W = Y H' (20.8.27)

which is a simple structure factor score matrix. Since H is orthonormal by

definition, we have from Eqs. (20.8.224) and (20.8.27)

W' W = 1 (20,.8.28)

If the simple structure transformation is not orthonormal, we use h instead



172

of H and show that

w Y 1"  (20.8.29)

and the covariance matrix C for w is
w -

cw  = (h' h)' (20.8.30)

or if we let r be the correlation of the simple structure reference axes,

then

cw  = r
1  (20.8.31)

For computational purposes we have from Eq. (20.8.4)

t' a' L (20.8.32)

Y z (L t') (20.8.33)

Then

w = z (L (t'' H')) (20.8.34)t

for the orthonormal transformation, and

w = z (L (t' 1 h1 )) (20.8.35)

20.8.2 The Multiple Group Factor Score Matrix

Suppose we let f be the binary grouping matrix for the multiple group

method of factor analysis. The factor loading matrix given in Chapter 6 is

a = R f t'' (20.8.36)
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where

t t' f R f (20.8.37)

Then by the methods of the preceding section we have for the rank reduction

type multiple group factor score matrix

Y = Z f t' (20.8.38)

Since

R = Z' z (20.8.39)

we can readily see from Eqs. (20.8.37), (20.8.38), and (20.8.39) that

Sy y = I (20.8.40)

We also show that Y can be computed directly from the data matrix. We let

U = Z f (20.8.41)

t t, = u, u (20.8.42)

From Eqs. (20.8.37), (20.8.38), (20.8.39), (20.8.41), and (20.8.42)

Y = u t'", (20.8.43)

We may now use Eqs. (20.8.36), (20.8.38), and (20.8.43) to calculate a from

the factor score matrix Y thus

a - z' Y (20.8.44)



174

The same procedure could have been used to calculate the centroid factor

score matrix directly from the data matrix, having given the matrix L of sign

vectors. It will be recalled that in Chapter 5 the successive residual matri-

ces were required from which to calculate the successive sign vectors, and

hence they are not available in advance. It is of interest to note that a

in Eq. (20.8.44) is precisely a matrix of the correlations of the factor

scores with the variables, since both Z and Y are in standard measures. For

the case of orthonormal transformations to simple structure we have

W = Y H (20.8.45)

and for oblique transformations we have

w = Y h'- '  (20.8.46)

For the computational equations we have Eqs. (20.8.41), (20.8.42), and

W = U (t',1 H) (20.8.47)

and

w = u (t' ' h' '") (20.8.48)

for the orthonormal and oblique transformations, respectively.

20.8.3 The Principal Axis Factor Score Matrix

The basic structure or principal axis factor score matrix is well known

to be

Y z Qe (20.8.49)
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or, if the basic structure of Z is

z = P a Q' (20.8.50)

then

Y = P (20.8.51)

For the orthonormal and oblique transformation, respectively, we have

W P H (20.8.52)

and

w = P h,' (20.8.53)

For the covariance matrices of Eqs. (20.8.51), (20.8.52), and (20.8.53)

we have

Cy = 1 (20.8.54)

Cw  = 1 (20.8.55)

cw = (h' h)-1 = r"1  (20.8.56)

20.8.4 The Least Square Factor Score Matrix

Given the arbitrary factor loading matrix a and the residual factor

score matrix

E Z- Y a' (20.8.57)
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the solution for Y which minimizes tr W'E is well known to be

Y =Z a (a' a)1  (20.8-58)

if

a R RLtV4 (20.8.59)'

where L is arbitrr and

R = Z' Z (20.8.60)

t t' = L' RL (20.8.61)

then frcan.Eqs. (20.8.58) through~ (20.8.61)

Cy Y' Yi = t' (LI R2 L)-' (L' R3 L) (LI R2 L)-1 t (20.8.62)

if

L A(2o.8.64)

then it can be shown that

= t,= 2 (2o.8.65)

and therefore also that

I. (20.8.66)
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There appears, however, to be no simple expression for C for other L matri-Y

ces, such as the centroid sign matrix, or the binary grouping matrix f.

If we have the orthonormal or oblique transformations H or h, respect-

I ively, then

W = Y H (20.8.67)

and

w = Y h'1  (20.8.68)

For the case of Eq. (20.8.64) we have

Cw  = 1 (20.8.69)

C = r"  (20.8.70)

Otherwise,

w  - H'C Y H (20.8.71)

and

Cw  = Ci' CY h'" (20.8.72)

as can be seen from Eqs. (20.8.62), (20.8.67), and (20.8.68).

20.8.5 The Image Analysis Factor Score Matrix

Let

u -z ( - -) D (20.8.73)
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be the image data matrix scaled with D according to one of the procedures

of Chapter 15.

We let

M = (I -R1 D-)D (20.8.74)

and the scaled image covariance matrix be

Cu = U' U (20.8.75)

Let L be a matrix of the order of the factor matrix. As a special case, it

may be a centroid sign matrix, a binary grouping matrix, or the principal

axis factor matrix of Cu* In all cases, we know by the previous methods

that the rank reduction type factor score matrix is as follows.

u = U L (20.8.76)

t t' = U' u (20.8.77)

Y = u t''  (20.8.78)

We let

U = P Q, (20.8.79)

and

L (20.8.80)

that is, L is the principal axis factor matrix of C U. Then it can readily

be shown from Eqs. (20.8.76) through (20.8.80) that
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y = P(20.8,81)

W = PH1 (20.8.82)

W h (20.8.83)

arnd

y = (20.8. 84)

C w (20.8.85)

Cw (h' h)"' r (20o.8.86)

For the general case of L we have computationally

t t' = 'D( --' -' -1& (20.8.87)

B = M (LtV-) (20.8.88)

Y = ZB (20.8.89)

W = Z (B H) (20.8.90)

w= Z (B h'-) (20.8.91)

For the general case we also have Eqs. (20.8.84i), (20.8.85), and (20.8.86).


